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CALCULUS | _

This course on caleulus is being offered 1o people entering the Bachelor’s Depree
Programme. The reason for this is the relevance of calenlus to the varied problems facing
mankind. Derivatives and integrals, the two basie tools of calculus have proved very useful
in solving & multilude ofbroblcms in many different academic disciplines. Now-a-days
calculus is being used in building abstract madels for the study of population ecolopy,
cybemelics, management practices, economics and medicing, apar from its well-known

- applications in physics. i is this immensely applicable nature of caleulis which demands
thai we become familiar with ks basic comncepls.

I this course we shall be dealing with idez. il have evalved over hundreds of years and

that were formulised by the greatest geniuses of all tnie, OF conrse, we will nol siudy the

subjeet as it ariginuied, but will Lake wlvantage of the improvementis niade in caleulus aver

‘the years. AS you read 1his conrse furtbier, you will realise tat the English mathematiciam

Isauc Newton (1642-1727) and the German nullwematician Gotfricd Withelm Leibpiz(1646-1716)
were i major contributors o 1he development of calculus, We will also have a chanee to

look at 1he contributions of same otlicr malhematicians like Lagrange, Taylor and

Macliurin, to name a few,

This course is divided into four blocks. In the lirst Mock we shall review some lundamental
concepts of the real number system and functions, We shall aiso studly the concepts of
derivatives ol lunctions in this biock. In the second block we shall study how derivatives
help us 1o pel informaltion abour varions geomelrical propertics of curves. The third block
will inuaduce you to the sceond importanL concept : that of integrals. And we shall be
reading about the applications of caleulus in the last block. We have prepared a viden
programme entitled “Curves” based on ihe material in Bolck 2. “The video cassetrs will he

available at your Swidy Centre :

Thronghoui s course our main emphasis wili be on technigues rather than on theery. So
we have not included many prools ere. You will be able 10 find the prools ol many of
these theorems in the course on real analysis. A word of friendly advice here. Te master the
various sechnigues presented In this course, you witl need 10 putin a lot of practice. You
should attiempt alt the excreises as your go atong. Tn addition, you shoould laok up some other
books in e library of your Shidy Cenire, and Iry to sobve same exercises from these books
00,

We have lelt some blank space afler each exercise. You sheald use this space lar solviag the
exeruise.

Some Uselw! Books .

I Dilferential Caleulos hy Shanti Narayan.

2 Integrul Culenlus by Shanti Narayan,
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NOTATIONS AND SYMBOLS

{x :x salisfies
property P|

€

&

= (<)
<
Aul

TAMRE

ANB
N
Z

Q

e

WLLL
x—=a
lien F(x)
A=ia
X=yY
X~ f(x)
dy

ax "
(x)

£ (x)

n! x=3

Cin, 1)

nax [x, y]
min {x, y)

The set‘ol afl x such that x sarisfies property P.

belangs 1o

does net belong 1o

is contained in (is properly contained in)
is nol canlained in

The union of the sots A and B

The inttrsection ol the seis A nad B
A complemenl B3

The set of nalural numbers

The set of inlegers

The set of rational numbers

The set of real numbers

The set of compiex numbers
implics

implies and is implied by

if and only if

in tess than (s Jess than o equal 10)

is greater than (is greater tan or equal Lo}
there exists
for all

atagh

thereiore
hat is
with respect to-

- Xtends o a

limit of f{x) ns % tends to 4

t'is s tunction lomX to Y
a function { taking x to f(x)

derivative of y w.r., x

derivative of [(:) w.rt. x

derivative of [(x) w.rL. x Mx=a

factoriat n = n(n —1) .... 3.2.1

the number of combinations of r things taken out of n =
is approximarely equal 1o

the maximum of x and y

the minimum of X aud y.

n!

r'{n-r)!
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BLOCK 1 ELEMENTS OF DIFFERENTIAL

CALCULUS '

This is the first of the four blocks which you will be sthdying for the caleutus course. In this
block we shall be dealing mainly.with the concepl of differentiation and the various methods
of finding derivatives. To fully appreciate the concepl of a derivative, you will need 1o be
Lumiliar with the notion of the limit of a function. You can find a diseussion of limits in

Unijt 2.

We suppose thal you are already familiac with funclions. But. just to refresh your memory,
we have given a brief account of functjons in Unit 1. In Unit [ we also recall several

properiies of the real number system, which we shall be using, explicitly or implicitly, in the -

rest of the course. It is also possible that some ol you have nol siudied some aspecis of the

-Teal number system and functions earlicr, In that case Unit L will help you prepare a firm

ground for tht imposing structure of calcutus whicl) follows,

We shall introduce the concept of a derivative in Unirt 3, and then acquaint you with the
derivatives of snme standard functions in Units 4 and 5.

In Units 2 to 5, we have inciuded a number of examples. Please go through (hem carefully.
They will help you in a beter understanding of il concepts discussed andt will aiso serve ns
i guide in solving the excreises,
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UNIT 1 REAL NUMBERS AND FUNCTIONS

Structure

1.1 Introduction 7
Qbjectives

1.2 Basic Propertics ol R T

1.3 Abxolule Valug ’ 11

1.4 Intervals on the Real Line’ 5

1.5 Funclions 15,

Definition and Examples
[nverse Funclions
GI.’IP|IS of Inversc Funclions
1.6 New Functions from Qld ’ . _ 2
Qperlions on Functions
Composite of Funclions
1.7 Types of Functions . - 23
Cven and Oudd Tunctions .
Manotane. IFunclions
Perindic Functions

1.8 Summary n
i.9  Solutions and Answers 30

1.1 INTRODUCTION

s is the first unit of the course on Caleulus, We thoughi it would b 4 good idea to
awguait you wilh some basic resulis aboul the real number system mul functions, belore you
actually start your study of Calculus. Pechaps, you are aleeady Familiar with 1hese results.
Bul, a quick look through the pages will help you in sefieshing »our memory, il you will
pe ready Lo tackle the course.

In the next Ihree seclions al {his woitswe shall present some renplis about the real number
sysiem. You will Nindd a number of exmnples of vorivus types ol funciions in Sections 5 10 7.
You should alse suedy the graphs of these functions careMlly, It is very important 1o be able
.0 visualise a given function. Tn fact. Ity 1o draw 3 graph whenever you enconnter a new
‘unction. We shall systematically stidy e tracing of curves in Unit 9,

Objectives
Afier reacling this unit you should bhe able o

recal] the basic properties of real numbers,

derive other propeties will the help of the basic ones.

identify various types ol hounded and unbeunded inlervitls,

defing i lunction and cxamine whether i given function is one-onc/onio,
investipate whelber a given function hias an fnverse or ok, ‘

defing the scalar multiple, absolute vitlee, sum, differeace, praduet, quoticnt of the
given funetions, .

b determine whether i given function is even. ackl. mononnic or periodic,

oW W W W O

(.2 BASIC PROPERTIES OF R

0 the next three Sections, we are mom e bedi v abent i o e
li-pervading in matheneics, The reil nunibes sy s e o

on o s neh o e
arl of mathe matics, including calenlos ety Pl solor o o aadly siant fearmng
alculus, it is neeessary s undersind the stnctme of fhes e aprber sosenn,

o are already Ttiliar with e operatens of wldinon, sebacbome maliplicatma gl

ivision of real numbers, and with inequalinies, Here we shall quichly recudl same ol therr
ropentics, We starl with the operation of addition: :

e}
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N Elclmmls of Differential A1 R is closed under addition.
aleulus o Ifx and y are real numbers; {hen x + y is a unique real nuniber.
A2 Addition is associative, ’ f
X+ (y+2)=(x+y)+zholds forall x, y, zinR. )
A3 Zero exists,
There is a real'number § such that
X+O0ed+x=xforallxinRR.

A4 Negatives exist,
Tor each real number x, (here exists a real number y {called a negative oran uddmvc
inverse of-x, and denoted by —x)suchihatx+y=y+x=0,

A5 Addition is commutntive,
X+y=y+xholdsforaltx,yinR.

Simnilar ig thess propertics of addition, we can also list some propenties of the operation of
multiplication:

M1 R is closed under multiplication.
I{ x and y ase real numbers, then x.y is a unique real numtber.

M2 Multiplication-is associntive.,
x.{y.2)=(x.y)zholdsforall x,y,zin R .

M3 Unit clement exisis.
Theré exists u real nunber | such thiu
Xx.l=l.x=xlorevery xin R,
M Tnverses exist,
For eact real number x cther than 0, there cxists n1cal pumber y (called a multiplicative
inverse of x \uld denoted by x~!, or by 1/x)-such that
; ' xy yx=1.
' | . MS5 Multiplicotion is commulalive,
Xy = yx holds for all x, y in R.
- The next property involves addition as well as muliiplication.

r

D Multiplication is distyihulive over addition.
iy +z)=xy+xzholds forall x, vy, zin R

s
Remaik: 1: The fact that the above cleven propertics are satisfied is olien expressed by
saying that the rca} numbers form a fieid with respect to the usual addition and
mulliplication operations.

You mey have come peross a *field™
in the course on Lincar Alyebra,

In addition to the above meationed properties, we can also define an order relation on R
with the hielp of which we can compare any two real numbers. We write x > y to mean lhat X
is greater than y. The order relition ">" ligs the following propertics: :
O1 Lawol Tr lc!mtomy lholds.

' : For any 1wo real numbers a, b, ane and only one of 1he l'ollowmg holds:
as»b,a=b,b>a:

T e e

— T

02 3 is transitive.
fa>bandb>c¢ thena>c v a,bce R,

03 Addition is monotane.
1t a, b, ¢, in R are such tiial n >b, then ad-c>h +c¢.

O4 Multiplicotion ls manolone i the following sense.
“I0a, b, cin Rare such that a = b and ¢ > 0, then ac > be.
Cantion:a>bandec <0 = nc < be.

Remark 2: Any ficld (ogether with aclation > satisfying 81 (o 04 is called an ordered
tierd. ‘Thus K with the usual > is an example of an ordercd held:

Notations: We write x < y (and read x Is less than y) 10 mesn y > X, We wrile x S y (and )
read x is less flan or equal 10 ¥) (0 mesn citlier x <y or x =y, We write x 2 y (and read x is i
greater than or equal to y} il citherx > yorx =y,

! .
A number X is said to be positive or negative according as X > 0orx < 0. I x 2 0, we say
lint! X is non-negative.

. Now, you know that given any numiber x € R, we can abways find a number y € R such that
5 ¥ = x. (In fact, there are infinitely mnany such reaf numbers y). Let us see what happens when




' we lake any sub-set of R instead of a single rcal number x, Do yuu think that, given a set Real Numbers and Functions .
SCR,itis poqsmlc o findue R such thatuzx for allxe § 7 .

Bcforc we iry to answer this qucsuon. let us look at a definition.

Definition 1 Let § be a subset of R, An clement'u in R is'snid to be an uppcr b-uund of §if
u 2 x holds for avery x in 8. We soy tha1 §'Is bounded above, il there is an uppcr bound of S.
forS .

Now we can reword our carlier questions as follows ! Is it possible to find an upper bound
for a given set ?
Dcl us conmder the sth ={-1,-2,—-3,—4, ...]

Now, cachx € Z’is negative. Or, in othies words, x < 0 forallx &€ Z . Yo you,see, mthus
case we are able to find an upper bound, -namely zero, for our set z” .

- On the other hand, if we consider the set-of natural numuvers, N = {1, 2, 3 ... l.oﬁvinusly we
wil hotbc able to find an upper bound Thus N is-not bounded abovr,

You w:ll of course, realise that if u is an upper bound for asct 8 lhen utliut2u+t 3

;, (in facy, u+r, where v is any positive number) are-all upper-hounds of S, For example, we
hnvc seen that O is an upper | botnd for Z-. Check that 1,2, 3, 4.8, ... are all upper bounds
ofZ;

From among all the upper bounds of a set 8, which is bounded nbove, we can choose an
upper bound u such that u is less than or equal to cvery uppér bound of §. We call this u the
least upper boond or the suprcmum of 8. For example, consider the set

T={x e R:x254}={xe R.:-2€x <2}
Now 2,3, 3.3, 4, 4 + mare all upper buundg for thisseet,
But y6u will sce that 2 is less than any other upper bound.
Henee 2 is the sul:!rcmm;n or the loast upper bound of T.
You will agree that --1 is the Lu.b, (least upper bound) o-f z,

- Note that forboth the setsT and Z, the Lir.b. belonged 1o the set. This may not be frucin .
general. Consider the set of all negative real numbers R™= {x : x < Q). The l.u.b, of this set
is0.ButDe R~ |

Working on similar lines we can also definc a lower bound for o given set S to be a real
number v such that v < x for all x & 8. We shall say that-a set is bounded below, if we can
find = lower bourd for it. Further, the lower bqund of S which is greater than any other
lower bound of § will be called its infimum or greatest lower bound (g.Lb.).

As ir-the case of Lu.b., remember (hat the g.1.b. of a st may or.may not belong to the set.
We shafl say that a set § © R is bounded if it has both an upper bound anil a fower bound,
. Bascd on this discussion you will be able to solve the following exercise.

E 1) Give examples.to illusirie the following:
a) A sel of real numbers having a lower bound,
b) A set of real numbers without any lower bound,
- €) A selof rcal numbers whose g.Lb. does not belong 10 it,
d) A bounded set of real numbers.

i -
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Lltmenis.of Differentln, -
Culeulus |
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Now we are rerdy to state an important joperty of R.

C The order is complele, :

Every non-cmjty subsct S of R that is bounded above, has a supremum, (We shall use this
property in Unit 10).

Many more propcr.nc.': arc cither restatements or consequences of these sixleen propg:rlics.'
Here is a list of some of them. ’

—’I -

1. Zerois unigue.

If x + 0’ = xfor all xin R, then 0'=0,
2 Additive inJcrse is unigue.
For each x in R, there is aunique y in R such thatx +y =y +x = 0.

3 - Addition'is cancellative.
Ifx+y=x+z theny =z

4 Unijfy is unique..
Ifx.V =xforallx in'R, lhe,n I'= 1,

5  Multiplicative inverse is unique.

For each non-zero real number X, there is o umque yin R such that xy yx =1,
G Mulllp]l;auon is cancellative.

Ifxy=xzandx# O, theny= 2.

Definition 2: If x and y are any two real numbers, the result of subtraction of y from x ia
denoted by x — y and is dofined 06 X + (—y) Simllarly, the'division x +y (also dc,nulcd by
x/y) is defined ns xy™', provided y £ 0.

Now we are ready (o Jist a fow more properties. You are already aware of these. But let us
qu:ckly recall them. .

7 —(x+y)=(- x)+( Y)foraﬂx ymR

.8 Ifxy=0,then githerx =0 ory=0.

9 (xW'=xforallx0inR.

10 If x and y are non zcro numbers such that x™' =y, then x = y.

11 Ifa<bandc>0,thenac<be.

12 ais positive if and only if -a is negative.
13 Ifa<bandc<d.thena+c<b+d.

14 Ifa>bandc<0,then ac < be,

{5 ois nouw-negotive forall ain R,

. 16 1M a pnd b ure positive, then

) w=blea=b.’
(The symbol ¢ is read as “if and only il")
i) a?>bPen>b
i) al<breagh
17 Hb>0,Mena?<b?es-b<a<h,
You are also familiar wlth the following subsets of Rt

1) The set N ot natural numbers. Note |Iml it is the smaliest subset of R posscssmg the
following properies:

) 1eN : ‘ o
) keN.=pk+leN -

T N e




2) The set Z of integers. It is the smallest subset of R possessing the following properties: . Real Nuribers and Functlons

) ZoN \
i) Ifx;yeZthenx-yeZ
3) The sct Q of rational numbers. We observe that it is the smallest subset.ol R possessing
_ the following properties; '
) QoZ
iy Ifx,ye Qandy=0, then xy'€ Q.
You must bave also studicd the following properties of these sets.

1) ke Nif and only if k is a positive integer, that is, k € Zand k>0,

2) The operations of addition and mhltiplication on N sntisfy Al, A2, A5, M1, M2, M3, M5

and D, They do not, however, satisly A3, Ad and M4.
©3) The opcratioﬁs on Q satisfy Al to A5, M1 to M5 and 01 10 04. Therefore Q is an

ordered field. But C is not satisfied, that is, (¢ is not order- complele.

We Jist here some mare properties of these sets which you will find usefui in your study of

calculus: - :

" 4) Archimedean Property:Ifa and b are ony réal numbers and if b > 0, then there is a

positive integer n such Lhat nb > a. . .

5) Tf a is any real number, there is a positive infeger n such that n > & (Archimedean
_ property applied 1o a and 1).
§) Arcal number s is the supremum of a set SR if and only if the following conditions
are satisfied.
iy szxforallxinS.

ii) Foreach >0, thercisny in'Ssucnihaty>s—e. & {epsilon) is a Greek lewter uskd o
” ' denote small renl numbers!

For example, consider the set A= {x € R: §=<x< 10}. 10 is the supremum of This sct.
Now, if we arc given any €, say, £ =0.01, we should be abte to find some y € A such
that y > 10— 0.01 = 9.99. As you-can'sce, y = 9.999 serves our purposc.
Now 10,01 i$ al'_sdqm upper bound for A. But 10.01 is nol,lhc'suprcmum of A, For_
€= 0.001, we cannot find any y € A suchithaty >'10.01 - 0.001 = 10.00D.
)] Ei'cry nonemply set of real numbers that is boynded below, has an infimum,
The cxarclse bolow cun now be done easily, *~ '

E E2) 1) Show that the setof posltive real numbers ia pounded below. Whatds its infinum?

"b) Write the characterisation of (e infimum of a.subscl'of I, which cerresponds (o 6)
above. Give an example. '

1.3 ABSOLUTE VALUE _ ' ‘ .

In this seation we shall define the absolute value of wieal number. You wtll reidine the
importauce of Lhis simple concepl as you stucly the Luter units, .

TEX IS MO E b
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. x, or moil x), is defined by the following niles:

- Thus we find that for all x, y € R, I\+yI€I:\I+Iy1-

Delinition 3: IT x is a real number, ils nhsalute value, denoted by | x 1 {read as modutus of

= { X, 'il' x 20
®, il x=<0
For example, we get
151=5, |-5]|=5.
[1.7(=17, |-2]|=2, {0]=0
Tt is obvious that | x {is defined forall x e R. Thc following 1hcorcm gives some of the
imporiant properiies of | x |
Theorem I: 10 x and y be any real numbers, then
a) 1xl=max{-xx)}
b) Ix)=l-xl
&) IxP=xt=}—xP .
d) Ix+yl<Ixt4lyl (thetriangie incguality)
e) 1x—ylalixi-lyll '
Proof: .
) By the Iaw of tricholomy (Q1) applied te the rel numbers x and 0, cxactly onc of the

following holds:
Nx=0 idx=0, ariiiyx<0.

-

Let us consider these one by one,

i) Mx>0.thenixl=xand x > —x, so lhat
mnx {—x.x] =xand hence | & | =max {-x, x}

H) ITx=0,1hen x =0=—x, and therelore,
max {—x, x} =0, Alsolx1=0, sothul | x J=max [-x. x]

i) IFx <0, then|x|=~x, and ~ x > x, so that-
max [—x, xi = —x. Thus, aguin, | X | = max |[=x, x).
From this it follows thut x €1 x
b) I—xl—mlx{ (~x), ~%} =max [x,—x) =max [-x, x} =]x]l.
¢ Ifx20. then1x1=x, 50 that | x P = x2. .
Ifx <0, then | x I'=—x, so that} x P = (-x)} = x2,
Therefore, forallx e R, [ x P=x%,
Also|—=x P=1x P becanse | =x | =1x by (b). Thus, we have 1 x * = x?
d) We shall consider Lwo dilTerenl cases according as
). x+y20of ii)x+y<0.
3 letx+y20.Thenlx+yl=x+y. anxslxl.mdyslylby(a) Thcrcforc
x4yl =x+ysixl+lyl
-Letx +y <0. Then —(x +'y) > O, that is,
(—x) + (—y} > ( and e can use. the result of (i)
for —x and —y.Now | x + y1=l-(x + y} | by (b}.
Thus ix+yl = 1=+ - igl=xl+l-yl, hbyi)-

=lxt+tvl h)_r[_h_].

4

~ FEC e T

T wa

Thcrcforc wc;.,ct|\+ylslxl+lyl . . ’ {

c) DBy writing x = (x — y} + y and applymg the trmng]c inequalily (o the numbers x — y ang
¥, we have

Ixl=l(x-y)+ylsix—yl+lyl,
sothat Ixl-lylslx= yl : S

Since (1) holds forall = 'md yinR,




therclore by interchanging x and y in (1), we have
tyl-Ix 1.5 ly—-xl=l=x=yI=lx-yl,

sothat +(Ixl-tyDSlx-yl. - - L

’ Fré}n (1) and (2) we ﬁnci thatl x 1 -1 y | and'its negative — (| x 1 —1y |) are both Jess than orl ot

the most equal 10 | x =y 1. Therefore, max {Ixi—1ylL-(xI-1ly Dislx=yh
But the left hand side of the above inequnlity is simply [1x t=]y I} Thereiore, we have -
lixi-1yil < tx—yl

Thatis, lx— y 12, [1x)=1y 1] forall xy€Re,

Now you should be able.to prove some easy consequences of this theorem, The fpﬂowing-"

éxercise will also give you some practice in manipulating absolure values. This practice will ’
come in handy when you tudy Unit 2. : : T e

—

E3} Prove the following:
) x=0&lxl=C

by dxyl=)xl 1yl

) Fifxi=11xl, ifx=0
d) Ix—yl<txl+lyl

!

o) Ix+y+zl S Ix1+1yl+1zl

n Ixyzl=txi-lyklz)

¢) aad 1) can be extended 10 any number of reals. Now il a € Rl 6> 0. fhen
lx—-aled= x=a <8 or={x-u)< 8 according ng x — w20, orx —a <0, respectively.

If x - a < &, this means (hatx <a+9
If —(x - a) < &, this means thata —d < x.

Thus, we getthal 1x—al<d=pa-d<x<ar 8.

Renl Numbers:nnd Functions
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Coleutus L4 INTERVALS ON THE REAL LINE

Before we define an inlerval lenus see what is mvant by inumber line. The real numbers in
the set R ean be put Into one-te-one carregpondence with the points on asirnight ling L. In
other words, we shall assoeiale a vnique poind on 1, 10 each real number and vice versa,

Consider o straight line L (sce Fig. | (a}). Mark point O on it The point O divides 1he
Stratght tine into two parts, We shall use the par 10 the ke of O for representing negative,,
reil aumbers and tie par to the right of O for represcnling positive real nuinbers, We
choase a poinl A an [, which is (o the right of O, We shall represent the number 0 by O and
I 'by A. OA can now serve as a unit. To each postiive real number x we can associate exaclly
anc point Pyiig 10 the tight of © on L, so that' OP = | x [units (= % wiits), A negative real
nuiber ¥ witl b represented by a point ) lving 10 the lefi of O an the straight line L, so that
OQ =1y Lunlin, G= ~y units, since y is negutives. We thus Find 1t 1o each real nimber we

. cin aissocinte o point on e ling, Alse, cach point § on the linc represenis a unique real
number 2. such that | 71 = OS. Further, 7 is positive if-S is to the right of O, and is negative if

_ . , Sistwotheleltof O,
Distance is always non-negative, .

This representation of real numbers by paints on astraight Tine is often very useful, Because
ol this enc-to-one carrespendence belween real sumbers and |he poinis of a straight line, we
often call a real number ™ o poinl of R™. Simitarly 1. is called a “numiber line™. Note thal the
absojnte villuc or the modulus al any number x is nedhing but its distance from the point O
on the number line. Tn ihe same way, | x — ¥ L denotes the distunce belween the two numbers
x and y (see Fig. [(b)),

o

—————— $ | et ¥=Xx
X —]x- -
-2 - 0 | Y y
1 | 1 i i ! .
1 Kl ! ] ! 1 .
0O A . . y<x
¥y —=Ix-yl-s x
() {13}
Tipure 1 {a) thlllr:cr line ) ) Distance belween x and y Is [ x -y | :

Now let us consider the set of all real aumbers which lic hetween two pgiven real numbers a
and b. Actually, there will be four diflerent sots satistving (his loose condition.

These are:

) I b[={x:a<cx<b) TR b

i) Lo, bl = {xingxgh) T e .-

i) Ja,b]l=(x:a<xsb} "‘"“'_‘T n
: V) Ja.bl={x:ngx<h) o T h}

The representation ol cach of these sols is given alongside. Each of these sets is called an
interval, and a wnd b are called the cnd poinis of the interval, The interyal Ja, b(, in which
the end points are-not included, is called an open interval. Note that in this case we have
drivwn o hallow cirele around a and b 1o indicate that they are nol included in the graph. The
sel  [a, b] containg botl i1s end poims and is culled a ctosed interval, In lhe represendtion
ol this closed interval, we have pit (hick black dois a1 a and b lo indicate that they are -
included. in the set. '

The sets [, b[ and 1 a.b) are called halt-open (or half-closed) intervals or semi-open {(or

semi-clesed) intervals, as they coniiin only oug ond poine Tis face is aise indigated in

their geomelrical representation. .

[fa=b al=]naal= [, al =pand (2, a] = a.
Each of ihese intervals is bounded :lhové_hy b and boundled below by g,

Can we represemtihe set T = {x 115 —a! < 8) on she sumber line? Yes, we can, We know
a1 x ~adcan be thaught of as the distance belween x and a. This means [ is the set of alf
numbers X, whese distance from a is less than 8. Thus,

P={x:lx~-ulcd}

. 3,
i a a+d

74 = e —— T e




is the open interval Ja— 8, a+ 8[. Similarly, 1 = {x 1 Ix ~ai< 8] is the closed interval

[a—25. o+ 3]. Sometimes we also come across scls fikel,={x:0<Ix-q [ < 3). This

- means if X € 1.. then the distunce belween x and a is less than 8, but is not zero. We can also

say that the distance between x and a is less than &, bul x # a. Thus,
I==]n—5, a+ 5[\ [a]

o =Ja=8. alwla a+dl

n

~0 - 1 a+d

‘L

=

Apart from (he four 1ypes of intervals-listed above, there are a few more types. These are!

Ja,eef={ka <-x] (open sight ray) 1 >
- [a._c-a [={x:n€x} (closed righl'r:-.y} " nis
J— ea.b[ = {x:x<b] (open lefl ray) < - h
J= oo, b] = {x ; x £ b] (closed left ry) <= 1.1
]-sa.ea [ =R {open interviad) - - >

As you cursce cisiby. none of these scis are bounded. For instance, [a, o2 is bounded below.
but is not bounded abave, }— e, b is hounded above, bt is not bounded below, Note that ce
does not denolc i real number. it merely indicates (hat arvinterval extends without fimil.

We note Turther hat if § is any interval (bounded ar unbonnded) and it ¢ and d are two

clements of $, then all numbers Iying between ¢ and o are also elements ol S,

E .E4} Stue whether the foljowp rd rue or lalse,

a) Oe |1.8], M ~le j-o.2|
¢} le [L.2] dy e |5 o

" E E5) Represenl the intervals in E ) geometricalty.

1.5 FUNCTIONS

Now lel us move over o tonctions, Here we shall present some basic Tucts about fuuclions
which will help you sefresh your knawledge, We shall fook it varicas examples of functions
and shall also deline inverse functions, T.et us st wilh thé definition of a function,

1.5.1 Definition and Examples

Definition 4 [ X and Y are nwo suss. o function £ mm X o Y, is arle oo a
correspanidence which conmuels every member ol Xow hounigree tembor ol Y We wrile

B X Y Gead as T is a fonction fom N o Y0 O vsiled die donagiztand Yo cadbed the
to-denialin of { W Shall deicic by et angn et Tt o e e
IOXE AL

The following examples will help you i dnderstading thix dedmiin bettes,

Example 1 2 N -2 1, defined by {tx1 = %, s o Jincnon sinee the ile My =-~
associntes a unigue member (—xYy of R o every member s al N The domain here ix N and

the co-donuin is B,

Sxample 2 The rule 3030 = x/2 does not define 3 unctwon Gan X5 s odd nztrad
aumbers like 1, 3,5 ... frose N canoal be conneated to any member ol 7.

Real Numbers and Functions -
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Lxomple 3 Bvery namral number con be wrillen ns 4 product of some prime numbers.
Considcr theé rule {x) = a prime factor of x, which connects clements of N. Here since

=2 % 3, [(6) has 1wo values: f{¢) = 2 and f(6) = 3. This rulc docs nat associale a unigue
numhcr with & and hcncc doces not give a function Irom N 1o N.

Thus, you see, 1o dcscnbc a I'uncuon coniplefely. we h.wc to specily the fol!owmg three .
things:

a) " the domiin

b) 1he co-domnin and

_¢) the rule which associates a umquc member of the co-domain to cach member of the
domain.

The rule which dcfmc: a function need not always be in the form of 4 formula. But it should
clearly specify (pcrlnp‘: by actual listing) the correspondence between X and Y.

H (2 X = ¥, then y = {{x) is called 1he image of x under lor the f-image of . The setof .
[-imuges of all members of X, i.e, [M(x}: % € X} is called the range ol £ and is denoted by
F(X). Uis casy Lo see that [(X)G Y. .

Remark 3 a) Throughoul this course we shall cansider functions whase domain and co-
domain are both subsets of R. Such Tunctions ire eften called real functions or real-valued
functions ol a real viniable. We shall, however, simply use the word *'function® to mean a

. real lunction,

b) The variable x used in describing a funetion is often called a dummy variable because it
can be replaced by any other Ietier. Thus, for example, the rule f(x) = —x, x € N can as well -
be writlen in the form f() =1, 1€ Noras (U} =~ ., u e N. The variable x (ortoru)is
alse calted an independent variable, and [(x} is dependent on 1his indepeudent variable.

Graph of a function A convenient and uselul method for studying a function is to study it
through ils graph. To drmw the graph of a funclion [: X = Y, we choose a system of
coordinate axes in the plane. For cach x & X, the ordered pair (x, 1(x}) determines a point in
the plane (scc Tig. 2). The set of all the poinls ol...ined by considering all possible values of

-X (remember thal the' domain of {is X} is the graph of T. The role that the graph of a function
Plays in the study of the funcyion will become clear as we proceed furlher, Tn the meantime
let us consider some more examples of functions and their graphs.

A
\__ v

(x.f(x})
I [(x)

\

0 ¥ X

L 4

Fipz

Tj A coustant fnction: The simplest examplz ol a (unction is & constant funclion. A
constant funciion scids all the elemenis of the domain 1o just one etement of the co-domain.

[N Fim A

¥ > Tar example. let 11 R —= R be defned by fi{x)y="1.

Alternatively, we may write
's = 1%x e

The wruph of [is as shoyen in Fig, 3,

= Tz e Ae




Ilisthe liney = 1.

In general, the grapl of o constant function [: x ~» ¢ is a 'ilrn:ghl line which is paraliel 1o t!nc
x-axis at o distance of I ¢ | units front it.

2 The idenlity function; Another simple hut itnpnnnnl cxnmplc of a funciion is a runcliun
. which sends every element of the domain to jiself,

LeaX be any non-emply set, and lel f be the functmn en X defined by setting
f(x) =x ¥xe X,

- This functicm is known as the idertity function on X and is denoted byi.
Thr:. graph of i, the identity function on R is shown in Fig. 4. It is thc liney= x.

3 Absolute valueFunction: Another i mtcn:qtmg funclion.is the ab':olulc vitlue function {or
. medulus function) which can bc defined by using the concept of the absolute value of a real

numbcr as:

X ifxE_O
-x ifx<0,

f(x) = Ixi = {

The graph of this function is shown in Fig. §. It consists of two rays, both starting at the
origin and making angles ©/4 and 3n/4, respectively, with the posilive dircction of the
X=Xi8,

E6) Given below are the graphs of I;our functions depending on the notion of absolute

" value. The functions are x — Il x =X+, x> Ix+Thx= Ix—11, thougl not

necessarily in this order. {Thé domain in each ¢ase is R).Cun you identily them?

Real Numliers and Fuuclions
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4 ‘The Exponential Functlon Ifaisa pasmvc real numbm other than |, we can dcl‘ne a
furction f.w

R R

f().)—n‘ [a»0.n% )
This function_is known as the exponentinl function. A 'ipccml case of this lunction, where
ace, is ofien-found usclul. Fig. 6 shows the graph of the function F: R — R such thal
f(x) = ¢*. This function is also called the nataral cxponcntnl funclinn [ts range is the set
R~ of pesitive real'numbers.

3 The Matural Leparithnie Punsclion:

Lia
real numbers [: R* = R such that [(x) =In(x )
shown 1 Fig, 7. -

----- Y Thain Mam
1 1

unCiion is defined on ibe aci Aol [Iil\lll\-t

“he range of this function is R. Its graph is

"6 The Greatest Integer Funetion: Take a real number x, Eittier it is an integer, say n {50

that x = n) or itis nol an integer, I3 is nol an integer, we can fnd (by the Arcirimeclenn
property af read numbers) an integer n, such that-n < x < n + L "{herefose, for ¢achy renl -
number x we can find an integer n such tharn € x < n + 1, Ferther, for a given real number
x, we can find only one such integer n. We suy that o is Ihe greatest integer nol exceeding x,
and denate it by [x]. For example, [3] = 3 and {3.53= 3. {-3. 5] = - 4-Let us consider the
{unction defined on R by setting (x) = [x]. :

©

-
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This-funetion is called the greadest integer function. The graph'ol'lhc function is as shown

in Fig. 8. (It resembles the sieps of an infinile slaircase).

Notice that the graph consists of infinitely many line segments of unil length, all paralel to
the x - axis,

7 Otlier Funclions The lollowing are some impornt classes of functions.
1) Polynomial Functions [(x) = a x"+ 0, %%" + --eern +a, wherea [a,, <ee-- “mmnre a are
- L] - ' n
siven real numbers (consants) and a is a positive integer.

b) Rational Functions 1 (x) = a (x)/k(x), where g (x) and k (x) are polynemial functions
of degree n and m. This is defined for adl real x, for which k(x) = 0.

c) 'Trigonomelric or Circular Funetions I(x) = sin x, [{x) = cos x, {{x) = tan x,
f(x} = col x, [(x) = sce X, f{x) = cosee x.

) K - . X - -
d) Hyperbolic Funetions 1{x) = coshx =-(c—+;‘-=—-1  [{x} = sinhx = E—-——-E—) We
shall swdy these in detail in Unit 5. - 2

1.5.2 Inverse Functions

In this sub-section we shadl see what is meant by (he inverse of « Tunction. But before
talking abow the iaverse, kel us look at some special eategories of functions. These spccml
types of functigns will then lead us to the delinition of the inverse of a [unction,

Ong-one and Onlo Funclians

Consider the Munclion bz x — %7, defined on the el . Here h(2) = h(-2) =4. 2 and =2 arc
distincl members of the domain R, but their h-invages are the same. (Can you find some
more numbers whose h-images are cqual?) This may be expressed by saying that 3x, y such
{har x # v bur h(x) = h(y).

Now, consider the funclion g x — 2x + 3

Hcrc you will be able Lo sec that |h and &, ire 1wo distinct real numbers, then gx, )-md
edx,) are also distinct,

For,x, #x,=22x, #2x,= 25 43225, +3=p (x,) #pix,)

We have consi_dcrcd two functions here. While anc of them; namely g, sends distinct
members of the domain 10 distinct members of the co-domain, the other, namely h, does not
always do so. We give a special name 1o fupctions like g above,

Definilion 5 A funclion [ X — ¥ is xaid 10 be a1 one-one function { a {1- 1) function or an

injective Munction) il the images of distinct members of X arc distinet members of Y.
Thus the function 8 above 1s one-one, whereus h is nof one-one,

Remark 4 The condition “'1he images of distinet members of X are dislinct mcmbcrs of Y"
in the above definition ¢an he replaced by cither of the following equivalent conditions:’

a) Forevery pair of members X, y of X, x 2y = 1(x) £ [{y)
b) Forcvery pairof members Xy of X, [{(8) =fily) = x=y.

- We have observed earlier that for a funclion X — Y,

{(X)< Y. This opens two possibililies:
) TOD =Y. ori) fO) & Y. thatis, (XY isn proper subsct ol Y.

The lunclion h : X = x* %~ x € R falls in the second catcgory. Since the s.qunre of-any real-
number is alwnys nen-negnlive, ht'R) R* v {0}, the set of fion-negalive real numbcrs
Thus h(R)%& R.

On the other hand, the Tunction g @ x = 2x + 3 belongs (o the firstcategory. Given any
y & R (co-domain) if we ake x = (1/2)y - 3/2, we find that g{x) = y. This shows'that every .
member of the co-damain is « g-image of smne member ol the domai» and tbus, is in e

r:m‘gc g{R). From this we get that p(R) = R, The Tollowing definition characterises this

4
*—0
2 )
- - *—a X
L ] | I -] n
R Y i | P bl
4 -2 2 4
_&—a 2
. O—0
0 -4
Fig. B
i
|
| .
18.

property of the function.

Definition & A function {: X = Y is said 0 e an onto Tunclion (or i surjective funclion)
il every memnber of Y is the image of \'nmc member of X, U Cis a lunction fram X onto Y, -
we ofien wrile: £ N2 Y {ar: X = - ¥).

Thus. v is noi an onto function, whereas g is an onto functien. Functions which are both one-
one and onto are al special imparlance ir mathemaiivs, Let us sec what makes (hem special.

2T T T




Consider a funciion f:X— ¥ which is both one-oume i onto. Since [is an onto funclion, Real Numbers and Funclions
each y € Y is ihe image ol some x @ X. Also. since [is one-one, y cannol be the image of

two distinct membars of X. Thus. we find thal 10 cach y @ Y there corresponds a unique

x & X such thal [(x} = . Consequently, I sets up t one-10-one correspondence between the

members of Xoand Y. 1tis this one-to-one correspondence berween members of X and Y

which makes &1 ane-onc and onto Function so speciul. as we shall soon see.

Consider the function f: N — E defined by f(x) = 2x, where E is the sel of cven natural
numbers, We cin sce thar [ is one-one as well as ento, In faci, to cach y € E there exists
yf2 € N, such that f(y,-’") = y. The correspondenee y — y/2 delines a function, say g, Iram B
10 N such that g{y) = y/2

The function g so defined is called an inverse of I, Since. (0 cach y'& E (here corresponds. a
unique x €N such that £(x) =y, only one xuch funclion g can be defined ¢orrespending 1o a
given function f. For this reason g is eafled (he inverse of T,

As you will notice, the function g is also one-one and onto and therelore i will also have an
inverse, You must have alveady puessed thin the mverse of ¢ is the fanction T,

From this discussion we have the following:

1{ £ is 2 one-one and onte function from X 10 Y. (hen there exists 3 unigue fanclion

2: Y= Xsuch that for cich y @ Y. g{y) = x ez y =((x). The function g so delined is called
the inverse al 1. Further, T g s the inverse ol T, lhc'n 3% the inverse of g, and the two
functions f and g are said 10 be the inverses of cach ather. The inverse of a function s
usually denoted by 1~

To.find the inverse of a given funclion [, we proceed as [nllows:

Solve the cquation f(x) = ¥ for x, The resulling expresston for x (in terms ol v) defines the

innverse funclion.
. ‘.‘i ‘I i
Thus, if f(x)= —? “+ 2. wc solve T 1 2=y [or X,

]
This give'i us X = [5(y - 2)] chccf ls the tunction delined by ! (y)=|5y-2) ["

1.5.3 Graphs of Inverse Functions

There is an interesting, relation between the graphs o o utir of inverse funetions because oi
wliich, i the graph el one of them is knewn, the grapit of the other can he obined casily.

Let 2 X — Y .be i onc-one and onto Tunction, and lel &0 Y — X be the inverse of 1, A point
(n, @) lies en the graph of [ e .= [(p) & p = pig) < (. p) lies on the graph of . Now (he
points (p, 1) aod (g, p) are refections of ench nther with jespect ta.(w,r.L) the ling v = x,
Therelore, wecan say that the graphs ol T ind g are reflections of cach other w.eit. e hine
y= >‘ »

Therefore, il follows thal, if the'graph of one of 1he functions [ and g is given, that of the
ather ¢an be oblained by reflecting it w.rt, the line y = x. As an illustration, the graphs of the
functions y = x*and y = x'" are given in Fig,9. -

Do you agrec’lhat these two Junctions sire inverses of each mhv TN he sheer nl paper on
which the graphs have been drivvn is folded along tie e y = <. die iwo graphs will exnelty
coineide.

Ill! 1 - ]g




=

Elcmcr_ns of Differentlal
Q:\lculus

20

E e Compare the graphs of In X and ¢* given in Figs. 6 and 7 and verify that thcy are
inverses of each other.

{la given function is nol one-one an ils domain, we can choose a subset'of the domain on
wlich it is onc-one, und then efine i Juverse function, For exomple, consider the funcnor
l:x - gin X,

'Smcc we know thai sin {x + 21) = sin x, obviously this Tunclion is not one-one on R. But if
‘we restrict it to the interval [ =n/2, 7[/2]. wo Iaid thal it is ouc-onc Thus if f{z) = sin %
-V-x € [= Tr.-’Z 1t/2], then we can define

i {x) sin™! (x)=y ifsiny=x.
Similarly. we can define cos™ and win™ funéiions as inverse of cosine and * ‘angent I'uncnons
if we msﬁ-:a the domains to [0,] 1nd]-1rf2 wf2[, respeclively,
E E 8) Which of the followmg funclions are one-onc?
) R - Wdefined by i(x)=1x
b) 1R - R defined by [(x) % 3x - |
¢) [t R - R defined by 17xy= x=
d NR—=R deﬁnc{l‘hy f(x) =
E & 9} Which of thclfollnwing functions.ure onto?
a) .f: R — R defined by [{x) = Ix+7
b} & R"— R defined-by [(x) = />
€) i f: R =3 R delined by f(x) = x3+1
d) X 5 Rdefined by (x)=1/x, -
,whcfc X stands for the set of non-zero real numbers.

E E 10} Show that the function [: X — X such that {(x) = —1} where X is the sel of afl

real numbers except 1, is onc-one and.onto. Find its inverse.

E oS 11} Give one example of each of the following;
a) aonc-one function whiclr is nal onto,
b} onta function which is nol anc-one.
¢} a function which is neilker one-one nor onto.




1.6 NEW FUNCTIONS FROM OLD

In this section we shall see how we can construct new [unctions from some given funciions.
Thiscan be done by operating upon Ihe given fimctions in a variety of ways, We give a few
such ways here.

1.6.1 Operations on Functions

ScalarMultiple of o Function . o

Consider the function [': X — 3x2+I 4x € R. The function g:%x = 203x2+1) ¥xe Ris
such that g(x} = 2[(x) *x € R. We say that g = 2f, and 1hat g is a scalar muhtiple of { by 2.
In the above example there is nothing special about the number 2. We could have aken any
real number to consiruct a new Function [rom [ Also, there is nothing special abowt the

- particular function that we have considercd. We could as well have 1aken any other function,
- This suggesis the following definition: Let f be a Munction with donyitin D and Iet k be any
real number. The sealar multiple of I by k is 2 function with domain B. Tt is denoled by ki
and js defined by scuing (kD(x) = kf(x). '

Two spe¢ial enses of the above definition arc importani,

i) Given any ﬁinclion f, ik =0, the function kI lums out 1o be the zi:ro function. Thal is,
0.f=0. :

i) Ifk=-1.the luncton kI is calied the negative of I'and is denoted simply by - instead
af the-clumsy —1F.

Absolute Value Function (ar modulus functian) of a given function
Let f be a funciion with domain D, The absalute value fimctien of I, denoted by Il and read
as mad {is defined by scuiting

{ENxy=1f(x)1, forall x D,

Since F(x} 1= [(x}, if [(x)Z 0, fand | ') have (he same graph for these values of % for which
fxyz0

Now lel us consider (hose values of x for which f(x) < 0.

Here [ £{x) { = = {(x). Therelore, the graphs of [ and | [ are reflections of cach other w.r.L. the
x~axis for thase values of x far which f(x)«< (1.

\EJL ' ) - .YT

{a) _ (h)

Fig, 11
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Elements of Dilferential .. - As an example, consider the graph in Fig. L0(a). The portion of the graph below the x-axis
Calculus (that is, the pottion for which ({x) <) has been shown by i detled line,
"To dreave the graph of | 11 we reliadn the undotied portion in Fig, $0G0 as 11 s, and rcphcc the
dotled porl:on by its reflection w.r.i. The a-axis (see Fig, 10W)).

Sum, tIi[‘I’crcncc, Praduel and Qualient of (wo lunctions )
Il we are given twe functions with » common domain, we can lform-several new lunctions by
applying ilie four fundamental operations of addition, subtraction, multiplication anc
division on them.
i} Define a function s on D by setling
s(x) = f(x) + g(x). ‘
The funclion s is called the sum of the funelions £ and g; and is denoled by T+ g, Thus.
([ + &) () =M(x) +2(x) '
iy Define a function d on I by setling
d(x) = [(x) = g{x).
The function d is the Tunction obtained by subtracting g I'rom I, and is denoted by (—p.
. Tlmc forallxe 12

~ £ (x) = [(x) ~ g(x).
iiiy Define’a fnetion p on 1 by setting
p(a) = (%) E£(x).
The funclion . called the product nl' the function [ and g, is dcnolud by g, Thua forall -
L XE -D
08 (x) = () 8(x)

"iv)  Define a functiony on D by setting q(x) = [{x)/g(x), provided g(x) # 0 forany x € D.
‘The function q is calied the quotient of [ by g and i5 denoted by [fg. Thus. + -

(ffe) (x) = fx)e(x) (g(x)=0 foranyx e D).

Remark 5 Tn case g{x)=0forsome x & 1D, we can cansider the set, say D7, of all those
vilues of x for which g(x).# &, and define /2 on D7 by selting (I7a¥x) = [(x)e(x) yxe D°

Exampi¢ 4 Consider the functions (:x = s*nd g :x - x*, Then the functions [+ g,
- . { =g, g urc defined ax
(F + E)(X) = X2+ X%, .
A= gR)=xT —x*
(fg) () =x* ‘ '
Now, g(x)=0 & x' =0 & x = 0, Therefore. in order to define the lunction flp. we t;lmli
consider only non-zero \*.-.Iuec of x, 1M x = 0, M(x)e(x) = <3t = 1/ Therefore Tz is the
. function .
flgx — Ux, whenever x 0,

All the aperations defined on functions (i1l now, werne similar 1 1he corresponding
operations on real nurnbers. In the next subsection we are going fo introduce an operation

. . “which has no paralie] in R. Camposite lunctions play a very |mp0rmnt rofe in ealcolus, You
Lo e will readise this as you read this course furlher, :

1.6.2 Composite of Functions

Wa chall anur dacnsiba o maathnd alooesli, dann i e wrluimle i AL
ORI T RIS L KL B LI »uuu-uunf__ WS aEnTIoE WOk 15 RODTC Wi \.Illll.l\..lll

¥ from the ones studicd so Tar. Uptil now we hive considered lunctions willy the same domain.
We shall now consider a mlr of lunctions such-thit the co-domuin of ane is the domain of -
the mhu

- [aaf: X 5Yundg: Y= 2 l)r. (wo lunctions. We detine a Tunction b - X = Z by \uun[,
h(x} = g{i(x}]

Te obtain hix), we lirs lake the Cimage, 163, of an clement x of X, This f(x) e Y, which is
the domain of p. We then take the p-imuge of {{x). Ih.'.l is, gDy, which is an clemeni ol 2.

22 . This scheme his been shuwn in |IF i 1l ‘ .
r

[a LIRS

B T p——




~ W

Real Numbers anid I“ullélinﬁs

: Flg. 11 !
The function h, defined above, is called the compoasite of f and g and is wrilten as gsf. Nowe
the order. We {irst find the f-image and then-its g-image. Try 1o distinguish it [rom fog,
" which will be defined only when Z is a subset ol X, !

Example § Consider the functions{:x > x? 4*xe Randg: x = 8x +1%x & R. gof isa
function from R Lo itself, delined by (g8ol)(x) = g(l(x)) = p{s) = 8x* +132x € R. fagis n
function from R 1o itself defined by (l2)(x} = f{g(x)) = f(8X + 1) = (8x+-1). Thus gol and lug
are both defined, butt are different from each other. | .

The concepl of composite.functions is used not only to combine funclions, b also o lonk
upon a given function as made up of twa simpter functions, For example, considler the
function ]

hox =sin3x+7)

We can think of it as the composite (gof) of the funclions [ x — 3x + 7 ¥x ¢ R and
giu=sinu #ue R,
Now let us try to ind the composites fog and gt of the functions:

fix—o2x+3%xe Randg: x> (1/2x-32vxe R

Mote thart f and g are inverses of each other. Now gof(x) = g(f{x)) = g(2x+3) '

| . 3_ . :
—-5(2x+3)—-2-—x. -

Similarly, fap(x) = I{g(x)) = 1(x/2 — 3/2) = 2(x/2 ~ 3/2) + 3 = x. Thux. we sce 1hal Eel{x) =%
and fop(x) = x lorall x € IX. Or, in other words, gof and lag are the identiy Minction on R,
Whuy we have observed here is Irue for any 1wo lunclions £ and. g which are inverses of each

© other: Thus, if F: X — Y and g ¥ = X are inverses of ench other, then al ael fup nre
Identity functions. Since the domuin of gof is X and ihat of fap is Y, we can write 1his ns ; i

gof=i, fg=i.

This facl is often used to test whether two given functions are inverses of each ather,

T L e T e ey

1.7 TYPES OF FUNCTIONS

In this seetion we shall walk aboul various types of functions, miumely. even, udd, increasing,
decreasing and periodic functions. In cueh case we shall also Iry to explain 1he concept .
through graphs, ’

1.7.1 Lven and Qdd Funclions

We shall first introduce two importam classes of functions: even funclions and okl

lunctions. Coisider the Tunction { delined on R b seltine A
l'.'.r..\ Pl e _ ' \.’
naj.—a AT I

You will notice thit fi=x) = (=)= 52 = [(x) vx e R

This is un example of an even function. Lets fake a leok acthe griph (Fig 127 of this
Tunction. We tind than the graph (3 parabola) is symmetricai iaboul the y-axis. |1 we [old the -
paper along the y-axis, we shitl gee that the parts of the praph on both sides of the y-uxis -~
completely coincide with each other. Such fenctions are called even Nimetions. Thys. i 0 N

function I, defined on R is -:\:cn. il for gach x € R, [{—x) = [(x).

The graph ol an even funclion is symmelric wilh respect 1o e y-ixis. Wealso note that il Fip, |3 23
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the graph of a function is symmetric with respect (o the y-axis, (he function must be an cven

" functlion. Thus, if we are required (o draw (he graph of an even funclion, we can usc this

properly (0 our advantage. We only need (o draw that part of the graph which lies to the
right of the y-axis and then just ke its reflection w.r.l. the y-axis 1o obiain the pant of the
graph which lics to the left of the y-axis.

E 12} Given below are two examples of even functions, alongwith their graphs. Try to
convince yourself, by caleulations as well as by looking al the graphs, that both the functions
are, indeed, even Munctions,
a) The absolute value Mnction on It v
f:x oIl
The graph of fis shown alongside.

of non-zero real numbers by
seting g(x) = 15 x # 0, . i
The graph of £ is shown alongside. -

Z

Now let us consider the function {-defined by setting (%) = x* %x € R. We.observe that

T (x) = (%) = -x* = —M(x) %% € R. If we consider anw.er function g given by g(x) = sin x-

we shall be able te note ggain that g(—x) = sin(-x) = —sinx = —g{x}.

The functions f and g above are similar in one respeet: the image of ~x is the negative of the
image of x.Sueh function- cre called odd functions. Thus, a lunclion f defined on R is said
10 be an odd Tunclion il 5{—A} = —f(x} ¥x & R.

IF (x, [(x)) is a point on the graph of ar odd function f, then (-x, —{(x}) is also a point'on it.
This can be expressed by saying that the graplt of an odd function is symmetric with respect

1o the arigin. In other words, if you tumn the graph of an odd function through 180" about the
-origin you will find that ybu get the original graph apain. Converscly, if the graph of a

function is symmetric with respect to the origin, the function must be an odd function. The
above facts arc often uselul while handling odd functions, ™

£ 13) We are giving below two funclions alongwith their graphs. By calculalions as well as

by looking a1 the graphs, find out whether each is even or add.

n) The identity function on R: . p

Mx—x

b} The function g defined on
the set of non-zero real
numbers by setting '

(%) = 1/x, k0. _ _\

LLome )




While maury of the functions that youi will come across in this course will lurn out 4o be Real Numbers and Functlans
-elther even or odd. there will be many more which will be neither gven nor odd. Consider,

for example. (he function
X {x Y
Here §T= x) = {=x I)J =k LI =1(-x) ¥x e R?
The soswser is ‘ne', Therefore, [is aot an even lnetion. Ts (8} = =ft=x) Vx & R? Again,

the answer s 'no’, Therefore 1 is not an odd lmetion. The same conclusion could have been
drawn by considering the graph of [ which is given in )¥ig, 13,

You will observe that 1he graph is symmetric neither with respecl to the y-axis, nor with X
respect 1o the origin, 2
Now 1here shouid be no difficalty in solving the excrcise bclow
E 14} Which ol the Tollowing functions are even, which are odd, and which are neither
even ror odd? .
a) x = x4+l xe R fo) {(1. i x s rational
. e f ~ : x)= . .
By x—=x*—1, ¥xeR . ¢) I. il % iw irrational
C) X—CosX, ¥xe R
d) x=xIxl ¥xe R
~
i
4y

. 3.
1.7.2 Monotoie Functions 2
In this sub-section we shall consider two Lypes of funelions: ' 14
i) "Increasjng and ii} Decreqsing — 9 ———
Any function which conforms 1o any onc of these types is called a monotane funclion, Doces -2 .'1 . 1 2 X
the profit of a company increase with production? Does the volume of gas decrease wilh
increase in pressure? Problemis like these require the usc of increasing or decreasing
‘functions, Now let us sec whal we mean by an increasing function. Consider the lunctions g
-and h defined ty- )

a =1 ifxs0 | -
r(x%)=x = ;

( )_ and h(x) { | ifx>0
Note that whenever 5, > x|, we get x," > %%, that is, g(x,) > g(x,). Fig. 14

In other wards, as x increases, g(:.) also increases. le; fact can also be scen rrom the graph
of g shown in Fig.14,

Led us find o how h{x} behives as x increnses. ln this cise we see thas 1l'x > X, then'
h{x.} 2 hix). (Vou can verify this by choosing any values far \ and x > Equwnlcmly. we 5} <
can say lh.ll h{x} increases (or does nol decreasae) as x lll(.ll...l\c‘; The same can be seen from :
the gruph ol b in Fig.! 5, ) .

Functions like p and h ahave are ealler inr:-_r'f.‘-r'tsing or nnn-clecreasing funcrions, Thug, a
function [ defined on o domain D is said (o be increasing (or non-decreasing) if, lor every
pair ofelements x, x, € D, x,>x, = f{x,} 2 f{x ). Further, we say thal [is strictly
incrcusing il x, > %, = [(x,) > [(x,) tstrict incyuality),

Clearly, the function g : x — x* discussed above, is \Ir[clly increasing hmulon while ll 15
not 2 strictly increasing function,

We shall now study another cencept which is, in some sense, complementary Lo that of an

increasing function, :

Consider the lunction {| defincd on R by sciting 2
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- and ‘decreasing’, respectively.

Fip 17

e (1

1, fx<g=1
l"l(x)= —-x, if=-l<x<l
-1, ifx=z21 »

The graph of f, is as shown in Fig.16.

From the graph we can easily see thatas x incrcasc‘s f, docs not increase. :
That is, x, > x, = [,(x;) < [,(x,) or I'I(xzjia M(x,) ’
Now consider the funciion 2% = —x*(x € R)

The graph of [ is shown in Fig. 17

Since x, > X, =px} > K = =< —x1= (x,} < f,(x,), we find that as x increases, {,{x}
decreases. Functions fike T, and [, are called decreasing or non-increasing funetions. The
above two examples suggesl the following definilion: :

A function § defined on a domain D is said to be decreasing (or non-increasing) if for every
pair of elements )'.'l, Xy X, 2 X, :-.1'62) < f(x,). Further, {is said o be striclly decreasing if
X, >, = M(x.) < f(x)).

We have scen that, of (he two decseasing functions f) and [, £, is striclly decreasing, while 1|
i¢ nol sirictly decrensing. A function [ defined ona domain D is snid o be a monolone
function it It is either increasing or decreasing on D.

All he Four functions (g. h. f, fa)‘di.".cussccl above are.monotone functions. The phrasés
‘monmonigtlly increasing” and ‘monolonically decreasing” are olten used for ‘increasing’

t
While'many functions ire monotone, there are many others which are nol manotone.

Cansider, for example, e funclion

f:rx=ax*(xe R) ¢ 4

You have seen the graph of fin Fig 12, This function.is neither increasing nor decreasing.
if we ind that a given function is nol monotone, we can slill determine some subsets of the

domain an which the funclion is increasing or decreasing. For example, the function
f(x) = x* is strictly decreasing in | oo, O] and is strictly increasing in [0, .

B 15}  Given below are the graphs of some functions. Classify them as non-decreasing,
stricily decreasing, neithier increasing nor decreasing: .

YJ ,Yh Yh
. 0 . : .
o X X 0 X
Y
i) R ) : ()

1.7.3 . Periodic Fanctions

In 1his section-we are going 1o t2ll yoii about yet anather important class of functions, known
as periodic functions. '

Periodijc funclions accur very frequently in application of mathematics to various branches
of science. Many, phenomena in nature such as propagation of waler waves, sound waves,
light waves, clectromagnelic svaves elc. arc periodic and we need periodic funciions 10
describe (hem. Similarly, weallier.conditions and priccs can also be described in'terms of
periodie funcrions. )

Look at the fellowing patierns:
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You must have come across palterns similar to the ones shown in Fig.18 on the borders of

sarees, wall papers elc. In each of these patierns u design keeps on repeating itself. A
similar situation oceurs in the graphs of periedic functions? Look at the graphs in Fig. I9

*ﬂv{'@ :

Flg 19
n each of the' llgl.erb shown ébovc the graph consists of i certain patlern repeated |nFmicIy

nany times. Both these graphs represent periodic functions. To undessiand the situation, lef
1s examinc lhese graphs closdly.

-onsider the graph in TFig. 19w The portion of the graph lying belween x = =1 and x = | is -
he graph of the [unction » = $x | on the domain—1 S x < 1. ’

Chis poruon is being repeated both to the left as well 48 (0 the vight, by wamslating (poshing)
he graph through two units along the x-axis. That is (o sa#, if.x is any point of [-1, 1], hen
he ordinates at x, x £2, x 4, x £ 6, ... are all equal. The graph therefore represents the
unchonfdct‘ucd by

ix)=lxlif~1 <x<1and f(x +2}= f(x)‘

“he graph In Fig.19¢b} is the geaph af the xine function, % - sinx, wx e R, You will nolice
hat the portlon of ihe graph between 0 and 27v'is repeated both to (the vight and to the Jef,
fou know already that sin (x + 27) = sin x, &¥x e L. We now give a precise meaning to the
enn a PCTI{)(IIC funation*

\ function T defined on a donsis 1 is said (o he a perindic function o there exists 1
sesitive real imber posuch that (3 + pi = F030 focalt x c 1 The ncmber p s said o be o
ieriod of f. : '

[ there exists a smallest positive p wilh the property deseribad above it is ealled the per md
T

\s you know, tan (x + nr) = tan x n & N This means thal nr, ne Noare all reriods al the
ingent fienciion. The smallest of 1hese, that is 7, is the period of the 1angent function,
e if you eini do his exercise,

an
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E E [6) a) What are ihe perinds of 1he funclions given in Fig. 19¢a) and (b)?

L) Can you give one other period of cach of these Functions?

AS anollwfcxumplc of a periodic function, consider the funiciion I defined on R by selting
Ix) = x —{x) :

Let us recall that {x] stands for 1he greatest integer not exceeding x.

The graph of this Tunction is as shown in Tig. 20.

Fror the graph (as alse by culeulation) we can easily sce that

f(x 4+ n) = [(x) 45 ¢ R, s {or cach positive infeger .

\l! J} ‘A‘

LS LLL 0L

Flgp, 20

The given function is therevare periodic, the numbers 1, 2. 3. 4 being all periods. The
smallest of these, namely 1. is the perical. .

Thus the givea function is periadic and has the period 1,

Remurk 6 Monotonicity and periodicity are 1w propertics of functions which cuinnol
coexist.- A monotone functipn enn never be periadic, and 4 periodic function can never be
nionotane,

In general, it may not be easy to decide whether a given funclion is periodic or nol. Buj
sometimes i can be done in.a straight forward manncr. Suppose we want 10 find whether the
function £: x — x? x e R is periodic or not. We start by assuming that it is periodic with
period . . ) : : ’
Then we must have p > 0 and {{x + Py =1(x) A%

S EFpP=x* Y .

S2p+pi=0 ¥x

=p2x+p)=0 ¥ x

Cansidering x ¢ —p/2, we find that 2x + p # 0. Thus, p = . This is a contradiction,

Therefore, liere docs not existany positive nember p sucl: thar Mx4+n)y= %), Y = 1 and,
consequently, [ is not periadic,

E17)  Examine whether the foltawing functions are periodic or not. Write the neriotls of
ihe periodic functions,

a1} X cosx , BYx = x+2
¢) x—-sin2x ) X = tan 3x
e) x—cos{(2x+9) ) x > sin x 4 sin 2x

P
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B
E E 18) The graphs of three functions are given below!-claysily ke funclions as periodic and -

non-periodic:
f |
Y - o
/\\/
(a) -
o X
L ‘
.Y =
| - |
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"B E 19} Is the sum of 1wo periodic functions also periodic? Give reasons for your answer.

We end with summirising what we have discussed in this unit.

1.8 SUMMARY

In this unil we have

| bricfly revised the basic proPc’ftics of real numbsrs,

2 defincd the absolute value of a real number x as

Ixl=xifx=0

==xilx <0
3 discussed various 1ypes of intervals in R
" Open: Job] ={xeR:a<x<b}
closed: [a.b] ={xeR:us5x<b ]

semiopen:  Jab]l =(xeR:a<x<bh)

or |abl =[xeR:agx<b),

wherea, be R,

4 defined a function and.discussed various types of functions along with their graphs:

one-one, onto; even, odd, monolone, periodic.

3 defined composiic of functions and discussed the exisience of the inverse of a function,

1.9 SOLUTIONS AND ANSWERS

EN a
b)
<)
d)

E2) n)

b)

The set P in a) nbove has infimum 0. since

Ely m

b)

“The set (1,2, 3, ...} has a lower bound, c.g., 0.

Theset{........... =3,-2-1,0,1,2......... .| dees not have a lower bound. -
The g.1.b-of the set S = (1Y, 5. ... Mav...}is0,and D g S,
[x:x€Rand | x £ 2) is 2 bounded set as it is bounded above by 2 and below

by 1,
A veal number pis posi[i\"c il p > 0. Hence 0 is a lower bound for the set P of
positive real numbers, Thus the set P is bounded below. lts infimum is 0.

A reol number,r.Is the infimum of o set § © R if and only if the following
conditions are satisfied: -
iy r=xforallx e S.

ii) Foreach e>0, thereisye Ssuchthary <r+e.

.

i) O<pforalpel and
i) forexche>0 thereis €/2& Psuchibat -gf2<0+e=¢

I x I=max | %, —x]. Hence x :I0=> I%1=0and
fxl=0=max, [x.,-x)=0=x=0,

There are three enses 1) x 20,y 20

2) x ancl'y have opposile signs

Nx20,y=0.

We take 2). Suppose x > 0, v <0, Lhen,

bx) smex (X, —x} =5,y l=max [y, =y] = -y.

EET Rty p—ten




xy<O=lxyl=—=xy=xx{y)=Ixllyl
13 and 3) can be proved similarly.
¢ Ifx>0Ixl=xand| [/xI=1/x=1/1x1
Fx<Olxl=—xand l/xi=—1/x="1/1x]I

Cd) Ix=yb= Ix+Ep) IS IxT+l-yl=ix iyl
e) Ix+y+zl =1 x+y)+ zlsix +yl+lzl<ixl+lyl+lzl
N Ixyzl=lxyllzl=IxIlyllz]

E 4) a) False b) True c) True

) Falge
E S a) 5 ; E Ly = 3
9 -a . B .
, 1 2 5
EG a) x—lx—=11 b x--Ixl
S xolx+ll . dy x—Ixl+]

.E 8) b is one-one
E 9) a)isonto
E10) fix)= 2t =4 2
x—1 x~1
2. 2

=)= 14 S5 =14 =2

2 2
= _ o x-l=y-|l=x=
= X=1 3o 4 =y
Henee f is one-one.

.Thenxg Xandy= I'(x) Hence, fis onlo.

. +1
Itye X,putx= y

f"(x) —""'}

E') a) f: R ———R:(x)=/X
B iR ———R* U [0): fx)=x?
c) fiR e T f(x) = x*

E 12) 2) f(x)= Ixt=sfl=x)=|—-xI —J\x I= {(x). Henee, {'is wcn
B g(x) = 1/x? = g(—x) = 1/(~x)* = g(x). Henee, g is even,

E13) a) i(x)=x={(-x)= —x= —[(x). Hence, f is odd. -

' b) g(x)= 1x =5 g{—x) =~ 1/x = — g(x). Hence, g is odd.

E 14) g),c)and c) are even
d) isodd .
b} is neither cven nor odd’
E 18} n} neither increasing, nor decreasing
b} non-decreasing c) strictly decreasing
E 16) The period of the function in Fig.19 a) is 2. Other periods are 4, 6, &, ..........
The period of the function in Fig.19b) is 2. Other periods are 41, 6m, ..........

E i7) a) Periodic with period 21 -
Since cos (x + 2m) = cos x forall x,

hy nat nosindin

B not periedic
¢} Periodic with period =,
_d) Periadic with period w/3.
¢) Periodic witl period m
fy Periodic with period 21
E 18) - a} and b} are peripdic, ¢} is not.
E 19) No. For example, x — {x] and Isin x] are pcriodfe, but their sum 1% unot.

Renl Nembaers and Functlons
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UNIT 2 LIMITS AND CONTINUITY

Structlure

2.1 Intreduction 32
Oljectives ’

2.2 Limits . iz

Algebr of Limirs R
Limils a5 5 =) = {rr - )
One-sitled Limils - .
2.3 Conlinuity S ¢
Defemitiens and Examples
Algebra of Continnons Funclions .
2.4 Summary . a8
2.5 Solutions and Answers A8

2.1 INTRODUCTION

The last unit has helped you in recailing some-fundamentais that will be nceded in this
course, WE will now begin the study of calenlus, st-1:ng with the concept of limit*, As you
read the later units, you will realise that the sceds of c.tlcu!ut: were sown as carly as the third’
century B.C. Bt it was only in the nineteenth centory tut a rigorous definition ol & limit
was given by Weierstrass, Before lim, Newton, d' Alembert and Cauchy bad « clear idea
about Jirnits, but none of them haod given a formal anu precise delinition, They had
depended, maore or less, on intuition or geomelry. N

The introduction of limits revolulionised the study of calculus. The cumbersome proofs -
which were used by the Greek mathematicians have given way to neal, simpler ones,

You may already e an inluitive idea of limils. In See.2 of this unit, we shalf give you a )
precise definition of this concept. This will [ead to the study of continuous functions in'

+8ec.3. Most of the funclions that you will eome neross in this course will be continuous, We
shall also give you some examples of discontinuous funetions.

Objectives

After reading this unit you should be able lo:

€ caicuiate the limits bf fynctions whenever they exist,
o identify poiiits of continuity and discontinity of 4 function.

2.2 LIMITS

In this section we will intraduce you 1o {he nofion of limir’, Wc start with considering n
siluation which i lot of us are familiar with, such’ as train travel, Supposc we are travelling
Irom Delhi 1o Agra by a train which will reach Agm at 10.00 a.n. As he lime gets closer
anel (‘1(1'«‘.f‘| [f4] In ﬂn u,m_ the rhcln:m.r-.- of tha irain from ‘d.'b": E_vm closor and closcr o zors
{assuming that the wrain s running on timel), Here, if we consider lime as our independent
variable. denolud by Uand distance as a Tunction of time, say (1), then we see that (0 .
approaches zero as t approaches 10. 1n this case we say that the Timil o7 171} is zero as t tends
o 10, ’

Naw consider the funclion F: R — R defined by {(x) = x*+ t. Let us consider Tables 1{ay
and 1(b) in which we give the values of [(x) as x takes vajues nearer and nearer Lo l.

lit Table I(a} we sce values of x whicli are gréate than 1. We can also cxpress this by saylng
that x approaches | fre a the right. 8° »*larly, we can say that x upproaches | from the left in
Table 1(b).




Table 1{n}

Limits and Contlnuity
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. 1.2 : 1) | 1.0l 101
1 PR i !
o 2.4 3 22 | 2002
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* Talle 1ih)
i x Y 09 0.y 0999
!' 1) 1.64 1.1 19801 1.5989

T

We-find that, as x gets closer and closer 1o 1, f(x) gefs closer and closer 10 2. Alternatively,
we express this by saying that as x approacies 1 (or tends lo I) the hnm of f{x) is 2. Ler us
now give a precise meaning of ‘limit".

Definition 1 Let [ be a function defincd nl all paints near p (cxcepl possibly a1 p}. Let L be
- a real number, We say (hal T approaches the limit L as x approaches p il for cach real

number € 20, we can Mnd a real number & > 0 such 1hnt

O<lx—pleS=If(x)-Li<E.

As you know from Unit 1. 1x —pl<8mcussthatx € Ip—8,p+8[and 0 <l x — p| means
that x % p. That is. 0 < 1 x — p | < 8 means that x can (ake any value lying between p — § and
p+ Gexeeptp.

The limit L is denoled by lli_r:}. M{x )} We ulso wrile f{(x) = L as x - p..

Noie that. in the above definition, we take any real number & >0 and then choose some
650 sothatl.—e<f(s) <L +e .wheneveri x —pl <&, that is, p-8<x<p+d.

In Unit I we have also mentioned thal 15 — p | ean be thougin of as the distance between x
" and p. In the light of this the definition of the limit of a function can ilso be interpreted as:

Given € > 0, we can cheose 8 > 0 such that if we choose x whose distance from p is Tess fhan
3, then the distance of its image from L must be less than €. The pictures in Fi ig.1 may help
you absorb the definition,

This definition af limil wax tirst
siansl by Karl Weiersirass, argund
1850,

{E epsilon) and & (dela) are Greek
lewters used to denote reat numbers.,

‘3 " denoles “iends In”

The € - 3§ definition doel rot give
ns the valuc af L. I just helps nus
check whether a given nul er L s
1he limit of (x).

J} 4 'y EY
Y . Y . Y » Y .
™ s e ™~
L} L3 L o
T e e . M [
'
1
. L [ o) 4 -
o) C x ) c'X 0] ‘c’x 0] tc X
forexch €30 328050 D<ix—-cled = Ifix}—Li< &
Fig.1

Reinember, the number g is giver first and Ihe number & is Jo be produced.

An impertant point le note here is that while laking the limit of f{x) as X — p, we are
concerned only wilh the values of [{x) as x takes values closer and closer to p, bul not when

% = p. For exaumple. conzider the funclion M(x) = _x\ : II . This lunction is nol defined for

x =1, but is defined lor-all other x € R, However. we can stll alk about its limit as x = 1,
Thisis because for raking the limit we \\'I” hitve 10 Took al the vilues of [(x) as % fends (o 1.
but not when x =1.

* Now let ustake the following examples:
E\umplrz I Consider Ihe function f: R = R defined by I'(x) = x* How ctn we find
lim f(x)?

LR T
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-Look at the graph of { in FFig.2. You will sec thal when x is small, x*is also small.’ As x
.comes closer and closer 1o 0, x* also comes closer and closer 1o zero. Il is rcasonnblc 10-

expect that lim (x) = 0 a5 x = 0.

Let us prove that tlu.s is Wh‘ll h‘lpp :ns. Take any real number € > 0. Then, | fx)—-01<cee=
1x* [ <e &l x | <™, Therefore, il we chaose 8 = £ we get 1 f(x) ~ 0 < £ whenever
Ocl x — 01 < 8. This pives us hm f{x)=0,

A usetul general rule to prove lim ((x )= Lis to write dowa {(x) — L and then express it in
=ha
terms of (x — a) ns neh s possible.
Let us now sec how 10 use this rule to caleulinte the limit in the following examples.
2 . -
\ . =1
Example 2 Uerus caleutae Jim TIT
-t -

1 ‘ 2| .
We Lo that division by zero is wot defined. Thus, the function [(x) = P is nui
defined at x = 1. Bui, as we have mentioned earlier, when we calculate the limit as x
approaches 1, we do not Luke the value of Ihe function al x = 1. Now, (o obiain
=~ 1

2 - 2
.Iim'_k—[— . we 1irst note llml Xi=1=(x=1) (x4 1), 5o thal, b
I~ X 1 . o %=1

=x+1forxs=1l.

Thcrcfon. lim- -—-—I = lim (x + I)
=) K- "=

. As x approaches 1, we can mluluv-.]y see that this limit approaches 2. To provc (hat the Izrnu

is 2, we first wrile (x) =L s x 4+ 1 =2 =x — |, which is itself in the form % — g, since 1= 1
in this case, Let vs ke any number £ > 0. Now,

Ix+N—2l<cgenlz—-1l<e

Fhus, if we'ehadse & = ¢, in our definition of limil, we sce that

Ix~ll<b=¢c= I'f(x) ~Li=1x—~11<g This shows that Him {x +.1Y= 2. Hence.
2 L
-1 . .

Exgmple 3 Let us prove (hat lim (x*+4)= 13

A=+l

“That is, we shall prove that 3z£ >0, 38 > 0 such that | x’-l 4A-[3jce whcncvcr

[k —31<8.

_Hcrr;. fx)—L= (x’-_i- 4)'-—'12:1 =x'—9,andx —a=x -3

IHTrre—

n-




‘Now we write | x3< 9 {interms of 1 x = 3| : Limits and Co:mununyl
[x*-1=1x+31 [x-31 - E _ ' . L
Thus, apart from | x - 3 1, we have a factor, namely [ X % 3 I. To decide the limits of | x + 3 ), '

let us puy a restriction on'S. Remember, we have 10 choose 8. So et us say we chouso u
8 < 1. What daes this imply? .

Ix b=y ix=3lc =3 -1 <x<3+1
= 2<x <4 = 5<x43<7 Redall Sec.d, Unul

Thus, we have | x2— 9.1 <7 [x = 3 |. Bat our aim is 10 prove I'x?-0<e,
For this we shall try tomake 7ix -3 [ <e. Now when will this be true? 11 will be true whcn

Ix —3 l<ef7. So this g/7 is the-value of 8§ we were looking for. But we have already chosen
8= 1. This means that given &> 0, the § we chovse should satisfy

S§<landalso 8 € ef7,
. In other words@:min {1, Ef?l.shbuld SCTVEC OUr pUrposc. Let us verily thls: -
clx=31<b= Ix-3f<] and Ix-3l<c e/l =1x"-01=[x+31Ix-31<7.&/7=E

Reniark 1; If f is a constant function on R, that is, if f{x} = k 4+x € R, where k is some.
fixed real pumber, then lim f(x ) =k. -
‘X=ip .o .

Mow please try the following exercises.
E 1) Show that

. 1
ny ll_l)l‘ll % =1

b) lim — 1 3

oz 1\-1 ) .

Before we go Turther, fet us nsk, *Can x Rinclion (=) tend 0 twe different limits as x ends
op'?

The answer is NO, as you can see (rom the ['ullowi'ng I 35
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Theorem 1 If lim M{x)=L mf lim f(xy= M, thenL=M.
e e IL = MI

Proof ; Suppose L M, then | L - M [> {3, Since Ii:p f(x)=L.ilwetakee =
=y 4

then 38 ,> 0 such thal '

[x—pl<d, =tl{x)-Li<e

Similarly. since |il’l‘l F{x ="M, I 8§, >0 such
x-bp N
Ix=pl<8,=21f(x)-M <z
If we choose § = min {85 8, ], than Ix - pt < & will mean thoa Is-p! <& and Ik - pl < §,.
I this case we will have botls | [{x) = L F <o, a5 well as. J(x) - M1 <€

SethatiL—MIl=[L-Mx)+{x)-MISI{x}-LI+If(x)-MIl<e+€ .
’ =2r=IL-MI

That is, we get IL =M | <1 L = M |, which is a contracdiction, Therefare, our suppasition is
wrong. Hepce L =M, ’ .

We now stute Jnd prove a (liearem whose usofulness will-be clear to you in Unit <,
Theorem 2 T.etf. g and b be functions defined dn an interval { containing a, except
possibly at a, Suppose

i) M(x) < a(x) S hix) apx € [N a)

i) lim [{x}=L= lim h{x)
Then lim g(x ) existe andd is equal 1o L.
A=*Q

Proof: By he definition of linit, given € > 0, 36, > (tand &, > 0 such thal
[fx)—Ll<e for 0<lx~al<d und

Ih(x)—LI<e for 0<llx-nl-:82_

Let § =min [§, 6,). Then,

OD<ls-also=sI(x)-Li<e andIh(x}-LIl<e

= L-esSx)<sL+g and
L-ggshix)sL+c

“We also have I(x) £ g(x) S h{x)%tx e [\ {a)

Thus, wegetf0<ix—alcd=L~c< ((x)Lox)€h(x)sL4e
In other \".'ords, Octx—al<d= lgxy-Lice

Therelore xll_r'n1 glx)=L.

Theorem 2 is alse called the sundwich theorem {or (he squeeze theorem), because g is
being sandwiched ketween Fand I, Let us see how this heorem ean be used.

Exampled Given that T{{x) =11 Mx+ 13t x € R, can we c:llcui:.m:limI [{x)?
P,

We know that =3(x FIY S (k) — | < 3y a0 1) %x, This means Lhat
=3+ DA LR 341024 2w ©sing the sandwich theerem and the fact that

im (=3 + D 4 1)=1= tin - D 4 1], wegel lim f(x)=1.
. .

A AR »=—1

In the next section we will look ar the limits of (e sum. praduct and quotient of funclions,

2.2.1  Algebra of limits

Now that yoo sre familiar with limits, Let us state some basic properties of litis, {Their
prools are beyond the seope af fhis course,}

Theorem 3 Let Mand g be two Tunciious such thit

iy FCx) o Bimogfx) extst. Thea
\-'1|'|

N
i) \Ii_l.np W)+ gix)= fi,'.“,. (x4 ji.'-“.- z{x) Sum rule
i) Hm [x ye(x)i= [ Jim T(x]-|!— linn px }'i Praduct rule
PNl Ao _JL.\ -p i )
iii) ‘!LTI‘-E',-_(IA_S = "’}‘ Igf'\"] , provided ;“-':"pg(x )% 0 Reciprocal rule
LR




We can casily prove twa more rules in addition to the three rules giver in Theorem 3,

" These arc:
iv) limk=k ) Cansiant function rule
A=t [
v) Ii_r;np X=p ) Identity function rule

We shall only indicate the method of proving iv} and v):
iv) Mere!f(x}-Ll=1k-kl=0< g whatever be the value of 8,
v)  IfGx)—Li=ix—pl<e whenever!x —pl<$,if we choose § =¢.

Using the properties that we have just stued, we will calealate 1be limit in the fdllowing
example.

7,
Example 5 Let us evalume lim 327+ dx
12 2x + ]
Now lim 2x+ 1= lim 2x+ lim 1 by uxing i)
=2 =2 =2
= lim 2 lim x+ lim | by using ii)
=1 x-2 L R W)

=2x241=5#{ by using iv)and v)
-+ We can use (jii) of Theorem 3. Then the required limit is

lim (3x%+4x)  lim 3x2+ lim 4x
=2 k=42 x =32

- = - - by using i
lim (2% + 1) lim 2x + lim 1 y g1
a=r2 x=2 e -
lim 3 Hm x lim x+ Jim 4 lim x
=2 -2 12 x-12 x=1 2 ' . )
= - - ; by using 11
lim 2 lim x + [im [ y &
=341 =2 a2
_3X2X234x%2 20~4
: 2x2+ 1 -5 T

- You can similarly calculate the limits in the following excreises.

E

E 2) Show that lim & = 3
. . x=il

. 2
E 3) Calculnte limI 2% + 5 [._-_._,_J
x—

Limits nnd Continulty

=

L S PO

[ —
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222 Limitsasx o = (or —oo )

Take a look al the graph ol 1he function [{x )= +, x > Qin Fig.3. This is a decrensing

 function of x. In fact, we see trom Fig, 3 thal §(%) comes closer and closer to zero as x gels

larger and larger, This situation is similar 1o the ane where we have a funélion g(x) getting
closer and closer 1o a value L as x comes nearer and nearer 1o some nsmber p, thal is when
lim ¢ (x )= L.

The only diflerence is that in the ease of [{x), x is nol appraaching any finite value, and s,
Just becoming larger and Targer. We express this by saying that f{(x) — ¢ ns %5 «, or
.“';’.'.. f(x}= 0. Notc that, = is not a real numbier. We wrile x — o merely to indieate that

x becomes larger and larger.

We now formalise this discussion in the following definition,

Dci‘ini_(_ion 2 A function {is said to tend 10 a limit L as X tends to oo if, for each .€> 0 it is
pobsible 1o choose K > 0 such rhat | f{x) - L < & whenever x > K.

In tlits cuse. as x gets larger and laiger, 1(X) gets nearer and nearer 10 L. We now give
another example of this siluation,

Ixnmple 6 Let [ be defined by setting f0x) = 1/x? lor ail x & R\ {0}, Here f'is defines for
adl real values af x alher than zero. Let us subsiitute farger and larger values of x in

{(x) = 1/x" and sec what happens (sce Table 2).

Tahle 2

- L L HKH) 160,000

|:(—KJ =l OO0H 500001 Regeeriysdl]

We sce that as x becomes Larger and larger, f(x) comes closcrand closer to zero, Now, let us
chaose any € > 0. M x »1/vE, then 1/5* < e Therefore, by choosing K = J4E, -we lind that
x> K= (X)) <c. Thus, hm ipoy= 0.

A=

Fig,d gives uxs a graphic iden of how this funciion behaves 18 X - oo,

© i d
Sometimes we ulso need 1o Mudy the beluviour of o Tunction [(x), as x takes smaller and
stadler negadive values. ‘This can be examined by the fotlowing definition,

Definition 3 A function [ is said 1o tend (o Hmil L s x —-— oo if,lorecache » &, it is
pessible 1o choose 1= 0, sueh ha §{z) - L 1< e wheoever x < =K.
The following example wiil help you in understanding this idea.
Example 7 Cunsider tie functien [ M —» 1% deflined by
|

)= —=
B NN

CThe graph of Fis as shows in Fe.A.
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What happeas to [{x) as x 1akes smaller adl smaller negalive values? Let us make a table
{Table 3) to get some ideu.

L Tnble X

x ~10 -100 [ —1000

[
—— 101 _ 1710001 11000001
1S

(xy=

[ e e

We see that as x takes smaller and smaller negative vidues, f{x) comes eloser and claser 1o

zero, In fact 1X1 +x) <e Wlmnlcvcr P+ x> Ils.lth:u is, whenever x* > (1/e) — I, thal is,
12 . f2

or X >

iR — 1. Thus. we find that if we 1ake

. . 1
whenever either x < — l— -1

179 € E
K= I_IE_ Il .thenx <- K= [(x)!< €. Consequently, lim [(x)=0.
L T
In the above example we also find that lim [(x) = 0.
=y

Let us se~ how lim (x Yean be interpreted peometrically,
A —pen

b the above example we lave the function [(x) = 1700 + x%), and a5 x = &2, OF ¥—) —en,

(%) ~ 0. From Fig. 5 you cin see Mhatl, 4185 X 3 e Or X => — on, [he cirve ¥ = f(x) comes

nearer snd nearer the stroight line y = ). which is the x-axls. -

Similarly, if we say that lim g(x} = L, then it means thal, as x — o= the curve y =g(x)
. F

comes closer and closer {o the straight line v = L.
el
Example 8 Let us show that lim ———=
' b xT)

Now, [x/(1 + x3) - 1 1= 11 + x%), In thic previous example we have shown that

FLAT 3 x) < e forx > K, where K = | 1/€ ~1 I'* _Thus, given & > 0, we choose
K=11/e=11" s0thu

.2 2

. . X
1K= 5— H] < ¢. This means that lim ——— =1
1+ x° Xobe | 4y
We show this geomerrically in Fiy.6., }
-— I ."-_I P i
I H L ! t Lo
-3 2, -1 O ] 2 I

1 igr.6

Limits and Contlnuity ;
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You must be wondering ifall the praperiies given in Theorem 3 also hold when we take -
Jimils as x 2 co, Yes, they do.

You can use them 1o solve this exercise.

E E4) Showthat a) [imy I/x =0
" - Ay

b) fim (1/x+3/x% 4 5)=5

Someumeq we cannot use Thearem 2 directly, ns is clear in the following cxwmple Let us -
sce how 1o overconic this problem.

- SN s 3% 4
Example 9 Suppo.-.l_. we wanl o Ilndhm R rare

We cannol apply Thearem 3 directly since th. limits of the numerator and 1he denominator,
48 X = oo, cannol be found .

Instead, we rewrile the quoticat by multiplying the numerator snd denominator by 1/x,

for x 0,
3+ (i/x
Then, E: I; S ESi' ; for x 20, Now we use

Theorem 3 and the fact thntall[l}_ Ix =0 (see 154 a)), to get

Ix 4 1 L 3 ()
. 11[13_-2,—;—— * % T GBI

x].ﬁn (3 +1/x)

+
Jim (2+57x) " 2+0° 2
By now you must b n\.cd to the various definitions of limits, so can try this vxercise.
E ES5) a) Ifforsomecs> 0, and forevery K, J x > K s.L.

i t(x} =L I > e, what will you infer?
hy W l|_r31n (x)# L, haw can you express it inthe & — § form?




We end this section with the following importiint remark. -

Remark 2 In pakc we have to show that a function T does not tend to a limit L as
approaches p, we shali have to negate the definition of limit (also see ES(b)). Let us sec what
this means; Suppose we wanl to prove that I:mrl f{x ) # L. Then, we should find some

&> 0 such that for every § > Q. therc is some x € Jp— 6, p+ Srl‘nr which I f(x) -LI>eg,
Through our next example we shall iflustrale the ncg1t|0n of tie deﬁnmon of the hmu of

f(x) as % — os:
Example 10 To show that’ hm I/x + 1, we have to find some e3> 0such Ihat for .'my K

(howsoever large) we can alw_ays.find an x > K such that | l{x ~1l>e

-Take €= |/4. Now, forany K » 0, il we take x = max [2; K+ 1), we find that x > K and
i lfx. = 1 I'> /4. This clearlty sliows "‘“lxlﬂ‘l [/e1, ,

2.2.3 One-sided Limits

If we consider the graph of the function f{x) = ], shown iri Fig, 7, we see that {(x) does not
seem lo approach any fixed value as x approaches 2. But from the graph we can say that if
approaches 2 from the left then f(x) seems to tend to 1. At the sameg, lime, if x approaches 2
" from the right, then 1(x) seems to 1end 10 2. This means thar ihe limit of £ exists if x

. approachies 2 from only one.side (left or right) at a time, This example suggests that we
introduce the iden of a one-sided limit. .

Definition 4 Let £ be a function defined for all x in the interval 1p, q[. fis said to approach a
Nmit L as x appreaches p from right if, given any ¢ > 0, there exists a number § > 0 such

thatp<x<p+ 8= 1(x)~-LI<é.

In symbols we denote this limit by hm f(x)=L
iop*

S:m:lu.rly. the funciton f: Ja, p[ = R is said tmpproach a lmul L as x approiches p lrom
‘the left if, given any £>0, 3.6 > 0 such that p - 8<x<p=>lf'(x) Ll<e,

This hrml is denoted by l:m fx}.

Note that in computmg thcsc limits the values of f(x) for x lymg on only one side ofp are .
taken into account.

Let us apply this definition to the function (%) '[x] We know thal for x € [1, 2[ [x}=1.
- ‘That is, {x]'is a constant function on [, 2[. Hencc hm [x]) = 1.Arguing similarly, we find

that since [x] 2forallx & (2,3, [x] is. agmn 'lCDn‘ilHIll functian on {2, 3(, and’
S, ix)=2. -
Lct us improve our undcrslundihg of the definition of anc-sided limits by looking at some
more examples,
" Example 11 Let f be defined on K by setting

flxy= l-i:—l , when x =0

K0) =
We will show t]mt llm {(x)equals — 1. .
thn x<0,xl== :-:. and therefore, f(xy'= (— x)/x'= = 1. In order (o show that l"“ f(x}

exists and equals -1, we have 10 sfart with any & 5 0 and then find a & > 0 such th1t if .
= 8<x <0 then!f{x)- (-1} <e..

Since f(x) = | forall x <0.1{(x) — (= 1) i = 0 and, hence, any number § > 0 will work.
Tnerelare, whatever 8 > U we may choose, 1l — & < x <0, then 1 1{x) — {—1) i =0 < E. [Hence
lim_ Mx)=-1 -

Example {2 f is a function defined on R by selting

f(x) == —[x], for"ill x e R.

Let ug examine whcthcrlll_?}_ f{x} exists.

Recall (Unit 1) that this function is givenby {x)=x,if0€x <],
f(xy=x-1if 1 £x <2, and, in gencral
f(xy=x—-nilnss<n+i (séc FEg.S)

Limits and Continulty
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Since {(x} = x for values of x less than | but close to 1. itis reasonable to expect thay
;]EI':_ f(x) = 1.Lelus prove this by taking any £ > 0 and choosing & = min (1, €], We find

l-8<x<l= f(x)=xandll‘(x}-:[I=|x—l|<8$£.

Therefore, lim_ f{x)}=1.
=]

"Proceeding exactly as above, ui noting that {x) = x — 1 if | £x < 2. we can similarly prove’
thmxl_i.n;n,r F{x)=0.

E E6) Provethat ) Him x =[x]=|
X3

l'xl
o’ . | _
by Mm, %=1
. 2 x|
o iy 5,

Before going further, fet us see how the concepts of one-sided fimit and li.ait are connecred.

TATR T AT




Theorem 4 The lollowing stiiements are equivalenl. L.mits wd Cantinuity
iy lim [{x) exisls '

PR

iiy lim F(x) and lim F(x)exist and are equal.
i n' x=h

Prool ;: To show thal i) and ii) are equivalent. we have to show that i) = 1) and i) = 1)
We firest prove that i) = ii). Tor this we assume that ‘Ii_r}*:‘ f{xY=1.. Then giveh e > 0,
38> 0suchthaif(x)-Li<efor0< Ix-pl<®&.

Now, D< 1x—pled = pex<p+8and p—38<x<p. Thus, we have L f(x) - Li<e for
p<x<p+&and for p— 8§ <x <p. This means that lim_[{x)=L= lim [(x).

AT —Dp
We now prove the converse, that is, i) = i). For this, we assume that
lim f(x)= lim £(x3}=L. Then, givene> 0,388, >0 }
= = ) -

such that
Iy —Li<eforp—98 <x<p
Il(x)—l,lfernrpqu:p + &,
Let 8=min {5, &, +J- Then for both ~&<x<pand p<x<p+8, webave L f(x)~ L1 <e.
This means that | f(x) Ll<gwhenever0<lx—pl<8.
Hence lim f(x}= L.
x=p

Thus, we have shown that i} =141) and i) = i), proving that they are equivaleat.

Frair Theorem 4, we can conclude thad if hm (%) exisds. then lim T(x) and lli:n f{x)
ol bl

alsa exist and lurther ) v

lim f(x)= lim, f(x}="lim_f{(x)
x=b E=ip Lol . -

Remark 3 If you apply Theorem 4 1o the Mnction f(x) = x — [x] {sce Exampie 12}, you will'
see lh.uum {x = [x]]does not existaslim_ [x — [x}}# |l'ﬂ1 [x =~ [x]y,

L |
We shall use 1his concept of one-sided limits to define continuous Iuncucns in the next
seclion.

2.3 CONTINUITY

L
A tontinuous process is one that pacs on smoathly without wny abeupt change. Continuity of
a function can also be interpresed in a similar way. Look at Fig. 9. "I'he graph of the luaction
f in Fig.9 (a) has an abrupl cul at the point x = 3, whereas Lhe griph of the function g in
Fig.9 (b) proceeds smoothly. We say that the function g is continuous, while lis not.

4 ¢
v v]
/e—"—__--___“‘ﬂ
(&) 3 }\:." O X hal
18] by

g, @3 (a) Graph of T{L) Graph ul'g
Continuous functions play a very important rele i caleuing, As vou proceed. you will be
able te see that many theorems which we hitve slated in this eourse e true only lor -
continuous functions. You will also see lhat conlinuity is 4 necessury condition for the
derivability of a function. and 1hat it is a sufficient condilion for the integeability'of a .

function. But let us pive a precise mesning ta “a continuous lunclion™ now:. . 41
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2.3.1 Definitions and Examples , ‘
In this-section we shall give you the definition and some examples of a continuous function,
. We shall also give you a short list of conditions which a Tunetion musi satisly in order g be
continuous at a point, ' ;

Dcﬁﬁition 5 Let 1 be a funciion defined on n domain D, and let r be @ positive real number
such that the interval Jp — 1, p + ri c D. ['is said to be c?nlimmus atx=p if:!i_r.np f(x )= M(p).

By the dct_‘mi'li_c_m of limit this means (hat £ is continuous jt p if given €> 0, 3§ > 0 such
that tf(x) ~ [(p) I < € whenever [ x ~pl < &. To clarify this concept let us Jook at an
example.

Example 13 Let us check the continuity of the function
£ R — R such that f(x) = x atthe poiat x = 0,
Now, £(0) = 0. Thus we want to know if lim fx)=0.

LEST1) '

This is true because 'givcn £>0, we can choose §= £and verify that I x| <§ =21 f(x) | <, .

" Thus fis continuous at x =0,

Remark 4 fis continuous at x = p prEwidcd the following two criteria are mer:
i) lim-f(x} exists.
' I=tp

ii) ,!'_r,"p fx)="I(p).

(@ )
TP 10: () Graphof £ gy Grapli otg

Fig. 10 shows two discontinuous functions fand g. Criterion i) is not met by f, whercas g
fails to mecet criterion it} If you read Remark 3 again, you will find_that f(x) = x — [x] is not
continuous at x =1, B'u[ we have seen that we can caleulate one-sided limits of f(x) = x — [x]
atx = L. This teads us to the following definition. ’

Definition 6 A functien f: Ip, 4l R is $aid to bt continudus from the right atx =pif

I_in-l:1 f(x)=1{p). We say tha fis continuous from the lefL at q if Km . f(x}=f(q).
x : =g
Thus, f(x) =x - [x] is continuous from tie right but not from the left at x =1 since
lim_ f(x)# £(1) and tim, -f(x) = f(I) =.0. s

x| .

= .

E E7nGives — Q,definition of conlinuity at a point from lh'c right as well as from the lefi.

s T LA BT




E "E8) Showthata funcuon {:lp- 1, p + r[ ™ R i5 continuous at x = p if and only lff is
conlmuous from the right as well as {rom the left at x = p {(Use Theorem 4)

Now that you know how to test Ihe continuity of a [unction nt a point, Ict us go a step
funher. and dei‘ne continplty of a funclion on a sel.

- Definition 7 A function f defined on a domain D is said to be continuous on D, if il is-
‘continuous atevery point of D.
. Letiis se¢ some more examples,

Exnmple 14 Lelf(x)=x"forallxe Randanyn Z*. Show that 1(x) is continyous at ZFis the st of positive integers.
x =pforallpe R. : : T

We know that lim x = p foruny p & R, Then, by the product rulé in Theorem 3, we get

. lim x" = (lim x)(llmn).... I:m x) " (n times)
xp 1-1p 1= p —p .

=pp..... p @ times)y=p . Thercore , llm f(x ) exists and equals {{p). Hence fis

continuous at x = p. Since p was any nrb:trar}' numbcr in R, we can say that { is conlinuous

onR,

Remark 5 Usiﬁg Example 14 unlehcorcﬁ'l 3. we can also, prove that polynomial
a gt ax+...... +ax", whereag, a, ... a, € R, is continuous on R, that is,
ll_rpp (_ﬂ.°+“'x+ ..... +nx")—ao+n|p+ ..... . +apiforallpe R,

Exampie 15 The Qrcalcst integer function f ; R =3 R 1 f{(x) = [x] is discontinuous atx = 2,
To prove this we recall our discussion in Sec. 2 in which we have proved that llm (x)= 1
132
and lim f(x)=2. Thus, since these two limits are not equal, - llm T(x) does not exist, .
a2t

Thcrcforc fis not ccnlmuous arx=2 bccausc the first cntcnon lmd down m Remark 4 i is
not met,

. Example 16 Let f(x) =1 x | for all x € R.This ['is continuous at x = 0,

Here {(x)Y=x, if x 20, and f{x) == x if x < 0. You can show that
'Ilm f(x)= ]nn x= U=1{(0) and

""‘0 x-;g

lma_ f(x)= l:mu_ {(-x Y= 0 = (0), Thus, lim *f{x ) cxists and equals f{0). Hence f is
x=7 =) 1= 0

o Tcontinuous mx=0.
Note : f is also continuous at every other point of R. (Check this stalenient).

.2

Example 17 Supposc we want 1o Nind whether [{x) = X

1 is cantinuous at-x = 0.

In Fig.11 you sce the graph of f. [tis the line y = x 4 1 exeept for ihe pointi(1,2). We can write f(x) = 2 + | for all
’ A ’ x#l.
Y
- o
2 P

/] x

Y

o
f

Fig.11 45
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f{O)-(ﬂ - 1= 1)Y= 1 andl
lim f{x})= hm XZ= 1Y - D= l1m (x-l = |

=)

Lhm fix)= I‘UJ). so that T is continuous at x =0,
x—t

The exponential function f(x) = e* and the logarimic function £(x) = In x arc continuous
funcrions. You can check this by lnoking at their graphs in Unil-1, Similarly, x ~ sinx and
X =) COSX are conlinilons, X — tinx is continuous in - 1t/2, ©/2[. This lact is quite obviou‘_s

_ from the graphs ol these lunclions (We have given their graphs in Unit 1). We shall not

attempt i1 rigorous prool of thetr continwily here.

- Caution ¢ Checking the continnity of a function from the smoothness of its graph is not a

fool-proof methad. 1f you look at the graph (Fig. 12) of the funclion x = x sin {1/x), you
will find that it has no breaks in the neighbourhond of x = 0, But this function is not
continuous. Observe that the graph oscillates wildly near zera.

- 4

[

.Y

<
LS

W

' Fig12

E9) Show that the function £ R =R given by f(x) = I;‘(x’ 9} is continuous at all pomls
of It ¢xcept al X Jandx =-3.

w1

1=




Now *hat we know how o check whether a function is continuous or not, let us go further,
and talk-2haul the continuity of some combinations of [unclions.

2.3.2 Algebra of Contifvous Funclions

Let [ and g be funclions defined and continuous on a common domain D& R, and let k be
any rea) nunber. In Unit 1, we defined the functions I+ g, g, /g (provided p(x) = 0 any
where int 23, kland 1 £ 1. The following theorem iells us abaut the confinuily of these

. functions.

Thearess & Let [and g be functions defined and continuous on a common domain D, and lel
X be any rab numbar. The Tunctions £+ g, k0L 1 [ and [g arc all conlinuous on D.if g{(x)»0
anywhete in 1. then the function /g is also continuous on D. . ’

We shali ol prove this thcorem here.

In Unil 1. you have studied the important coneept of composite functions. In Theorem 6, we
will ki 200w the continuity of the composite of Lwo continuous functions. Here again, we
shall stre the theorem without giving proel as it is heyond the level of this course.

Theoram 6 Letf: D, - D, and p : D, - D, be continuous on their domains. Then pof is
centingous on D (D, D, D, & R).

Faampie 18 To prove that T: R = R 1 i{x) = {x* + )" is continuons a1 x =0, we'‘consider
(he functions g : R = R: p(x) = s*and h : R = R : h(x) = x* + 1. You can cheek that
[(x) = goh (). Further, by Remark 5, hvis continuous on R, awdl g is also contintous on R,
Thus. goh = [is consnuous on R,
Let us see if the converse of the above theorems are irug., For cxnmpllc, il { and g are defined
on an interval’[a, b] and if { + g is conlinuous on [a, b}, does that mean that f and g are
conlinuovs on [a,b]?
No. Consider the functions  and g aver the interval {0,1] given by

N 0, 0sx=s1/2-

fxy=1 - )

I, If2<x =] and

[ oogxzan
B=1y aexsgt

Then ncither { nor g is continuons at & = 172, (Why?) But {I'+ ) (x) = 14 € (0, 1].
Therelore, I+ g is continwaus on [0, 1)

Now, il | I'l is continuous at & point p. must { also be continuous at p? Again, the answer is
Na, Take, for example, the lunction {2 R — R given by

. -~ forx <D
I{x)=
(x) { 1 forx>0

Then L I{x)1= | in R and hence } [ is continuons,
But [ is not continuous 2t x = 0 (Why?)

E10) IfT:R — Ris defined by (x)= 4 b oirseZ

-1 iflxeZ,

is Coomfmous at ) x=1 -~ byx=- i .

B
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Flements af Differentia] Before we end this unit, we shall state an important theorem conceming continuous
functions. Once Agilin, we won'l prove this theorem ficre. Bul iry 1o undersiand ifs statement
because we shail be using it in Subsequenl unis. : )

Tlhicorein 7 (Intermediate Value Theorem) Lo T be continuons on the closed interval [a.b].
" Suppose ¢ is a real numbcr lying between f(a) and f(b). (Thar is, f(a) < c < f(b} or
flay>¢> f(b)). Then there exisis some Xo € Jabl. such that fx )=c.

How cun we inlerpret this gcbmctn‘cnlly? We have already scen that the graphof a
continuous (unction is'smooth. Tt does not have any breaks or jumps, This theorem says that,
if the points (o, I(a)) and (b, £(b)) lic on rwo opposile sides of a line y = ¢ (see Fig.13), then
the graph of { must cress‘ihe Jine y=¢, ‘ L

4
Y .
] (byi(b)
. )
(a,f(a)) - , ‘,1
o X ]

Fip.i3

Note that this theorem guaraniees only the existence of the number x. It does not tell us how
to find it."Anather hing to note'is that this X, need not be unique. : i
- That brings us to the end of this unit. -

2.4 SUMMARY.
We end this un_il_by-summrllrising. whn.l-ivc have covered in it.

1 * The limit of a fariction f ata point pofits d
“ If(x)—Llcewjmncvcrlx—-pi<8.- "

2 Orie-sided limits

3 -,!ir.n f(x )exists il and only if |
“-p :

omain is L if given €>0,38>0, such that -

lim f(x)und linr‘ll F(x) both exist and are equal,
Auip & =ip- i

4 A function f is c;ontihugus atapoint x=pil
©Jim fx)=r(py '
5- If the function f and g iqfd continuous on D, lh'r.-:n 56 are the functions f + g, fg, i {1, kf -
(wherek e R) ffe (where p(x) = GinD}y. - - . ) ) _
& . .The Intermedinte Value Theorem + I fis conlinuous on [a, b] and iff_(a)_.i.:;é < {(b) (or,

fla) > ¢ > {(b) ). then
x5 € Ja, Bl such thae f(x)=c.

———

2.5 SOLUTIONS AND ANSWERS -

E 1)a) Given any E >0, i we choose § = min (€/2,1/2}. then
Ie=ll<dgiff= x> 10

. :mld Ih’x - Ii; ,-EE—L[ < I’_\_.:_I_ -

S o f . 1/2
48, p=Rx-1}1e28<E. - ‘




'I113115,|x-—-li<5=:-| Ix ~ll<e
HBDCG. ]'lm ”?. —l )
‘x's—'!-‘ x> =3y +2

_.3=-—---—-— (x—l)(x+2) Jif x 1.

b) x=1 T x=1-

Givcn_é > 0, if we choose 8= min {(‘Zﬁ]e. ]1‘2}. then
'|'x—_[|4:],12'=-.:lx~:3,'2 = x +2 <72 and

3y ' _ Co
'xi—_ll '3|'=|(“— D+ < G2)1x = 1120/2) 27 - k=t

LI
~Y<E
X -1

’ 'I'hntié,lx—lkﬁ =

Hencc hmx ]_ =3
- .I l .l

~ 2 lim 3.

S x|

i E2) :hm 3fx—m—3!'l :3
L]

A - 5 lim x?
R ).2 : x—+[

‘E3) lim 2x+ 5 z{=2.lim x + ————

Y L4 x x =1 T4 lim x2
=1

S5x1
=2+ T-:T-'Zi 5/2=912
E4) a) Givene> 0if we choose K = 1/g, then .
k>K=211/x=01=11/xl<l/K=E

Thus, lim I/x =0
K=t e

- b} Given £> 0, il we choose K = 1/ '€, (hen
XK = I =-0= NN <1Ki=¢

Hence, l:m lfx =0

Now llm (l)’x+3fx + 5)
’ hrn 1,’x+31|m 1/x? +l|m5 04+3x0+5=35

K =}
.E5) a) .!.1..":'.. f(x)#L
b) 325056 %5>0 Ixstlx—pledand () -LI>e

E‘G) a) Sincex—[x]=x-2,2<x< 3,

lim_ x—[x]- lim x—2=1
3" x=9"

b) dim_ [x|/x = lim_x/x=1, {s|=x for x> 0.
x— " x-i_‘lf .
(x2+2)0xl i (x% + 2)(-x)

lim —————— =" [im rm——"" gincelxl==x forx <0
‘c)_ zop-. & T x-tQ- X N

= lim_~ (xf_-l-‘ 2=—-
K= 07

E7) fiscontinuous from the right at x = p if € > @ there exists a 8> 0 s,
p<x<p+ & = ilx)-fipice
f is continuous front the lefal X = p iF3F€ > 0 there exists 3 >0t

- I
._S..‘-J.\ _-.‘l.',. J"\ [REL
|. L N HE A H -

E8) fiscontinous x=p =» .|“1 HENERIID]

= Tim flx)Y=t{p}and llm [(xy= I{p) by Theorem 4
x—p* ’ x=pT

= f is continuous from right and from leftar x = p.

If f is continuous Mrons right and left,

=» lim [(x)=F(p)= im F(x)
LR pt fomme 7

=» lim f(x) exists anzl=f{p)
-

=5 {15 coninmus al p.
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CE9) lim f(x)= e =
. I—= R

1 ) 1
Tim x2~'¢ -9
I3

= I'.(a) for all o excepta =% 3

Hence f is continuous at all points except at +3, {is not defined at £ 3.

E 10)a) fis not continupus-atx =1. Fore= i and'a'ny §>0,if x is any non-intcgcr

.e ]1-8, 1 ¥8, then
L) - (D I=i-1-11=2>€

b) fls continuous at ~3/2. Since given &> 0, if we choose & < 112, the

lx = (=3 <lf2==-2<x<=1'=x & Zand hence | {{x) —f(=32)1=0<E. .

-
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3.1 INTRODUCTION

It was the seventeenth century. Some Europein mathematicians werc working on 1wo basic
prablems. : . -

i} Isitpossible to find the tangent (o & given curve at a given point of the curve?

iy -Is it possible to find the area under a piven curve?

* Two mathematical giants, Newton and Leibniz, independent of each olher, solved these
problems. The theory that they invented in the process was Calculus. '

In this first unit on differentiation, we propose 1o infroduce the concepl of a derivative which
is a basic 100l of ealculus, Leibniz was motivated direcily by the first problem given

above — n probtem which was of great signlficance for scienlific applications. He-
recogniscd the derivative as the slope of the tangent 16 Ihe curve at the given point, Newien,
on the other hand, arrived at it by considering some pifysical problems such as determination
ol the velocity or the acceleration of a particle atl a particulaf instant. He recognised the
derivative ag a ratc of change of physical quantities, We shall now show that both Lhese
considerations lead 1o the concept of derivative as the limit of a ratio. QFf course, 10
understand what n derivative is, you shouli have gone through Sec. 2 thoroughty,

We shall first differentiate some standird funcilons using the delinilion of the clerivative.
The algebra of derivatives ean then be effectively nsed to wrile down the derivatives of
several functions which are algebrric combinations 6f these [unctions. We shall also discuss
the chain rule of differentiation which aflers an unbelievable simplificalion in the process of
finding derivtives. We shall also establish a relationship between differentiable funclions
and continuous functions which you have studied in Unit 2.

.. Objectives .
Aflter studying Lhis unit, you should be able to:

L.eilniz { [646:1716)

®& draw a tangent o a given curve ol a given paint

o determine the rate of change of a given quanlity with respect Lo another R :
& oblain the derivatives of some simple functions such as x". 1 x LYX ctc. from ihe first -
principles '

@ find the derivatives of funciions which can be writien as the sum, difference, preeluct,
quotient of funclions whose derivatives you already know

o derive and use the chain rule af differentiation [or writing down the derivatives al
composite of fuhclions

® “discuss the relalionship between continnity and derivabilily of a funclion.

-5t
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The tangent of e angle which a
line-makes with he pasitive
direetion of she x-asis is ¢alled the
tlope of 1he fine,

3.2 THE DERIVATIVE OF A ‘FUNCTION

Before dcl"ning o dcrlvauvo iet us consider lwo problems in the next two subscelions, Thr:.
first is to find the slope of a tangent and the second is 10 find the rute of change of a gw:.n

guantity in térms of another. ~

3.2.1 Slope of a Tangent

Let us coasider the problem of finding a tangen! lo a given curve d1 a given point. Bul, what
do we mean by the tangeni to a curve? Euclid (300 B,C.) thought of a tungént as a ling”
touching the curve at one point. This definition works fine in the case ol a‘circle Fig.1 (a).
but it fuils in the cose of many oiher curves (see Fig. 1 (b).

(a) ' Flg. 1 . @)

. . . . .
. We may define a langent to a curve ai P (o be a line which best approximates the cyrve near
. P. But this definition is still 100 vague, Then hiow can we define o tangent precisely? The

congcept of limit which you have studied in Unit 2 comes to eur aid here.

Let P be a fixed pt;int on the curve in Fig. 2 (a), and lel Q be a nca.lrby point on that curve. -
The line through P-and Q is called a secant. We define tie wangent line at P 1o be the limiting
position (il it exists) of the sccant PQ as Q moves lowards P along the curve (Fig.Z{b_)).

Fip2

i it miy nal be aiwy '.)"-3 pOSﬁlDlG 1o find the II.U'IIIII‘I."| ['O'illlt’)n of the secanl. As we shall see

later, there arc curves which do not have 1angents ar some points. Tn {1, there are curves
wihiich do nol have a tangent at any point!

There is another question which we can ask here. Suppose we know (hat a tangent to 0 curve
exists ol a point, how do we go abou( actually deawing the tangent?

We have said earlicr that the tangent at P s the limiting position of the seeant PQ. With
reference to a system of coordigute axes OX and OY (Fig.3), we can also say that the
tangent at P is aJine through P whose slope is the limiting value of the slope of PQ a5 Q
approuches P aleng the curve, The prablem of determiining the tangenl is, then. the problem
of Mding 1he slape of the tingent line.




. Differentiation
- 4
Y .
{x+6x,f(x+bx) Q -
(x,K(x))
] P M
ol X X+ox %

Fig, .}

Suppose the curve in Fig.3 is given by y = [(x). Let (x.0{x)) b the point P and et

Q (x + 8x, f(x + 8x)) be any other-point an the curve. The prefix 8 before a variable quantity
-means a small change in the guantisy. Tlus, 8x means a small change in the variable x.

. (Caution_: &x is one inseparable quantity. It is not 8§ x x). The coordinates (x + 8, f(x + 8x)}
-indicdte that Q is near P. If 8 is the anglc which PQ makes with tho x-axis. (hen the slope of
PQ =1an & = QM/PM ' .

_E(x +8%) - 1x)
- x

The limiting value of tan 8, ns Q tends to P, {and hence 8x — 0 then gives us the slope of
the tangent at . Thus, :

A

: Fix + dx) ~ f{x
the slope of the tangent line = lim LM

[(x + &)= f(x1

This indicates that tlic 1angenl line will exist anly if the Timi of - - eXiSlS s

" 8x — 0. . . . Sy

Remark I In Fipg.3.we have tuken 8x Lo be positive. But our discussion is valid even for”
negative values ol Hx,

Let us 1ake an example .

Examplc 1 Suppose we want 1o determine the 1angent 1o the parabolit y = x*al the point
" P2, 4). -

In Figd'we give a portion of the parabolz in the vicinity of 142, 4),

——
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Equation of 1 line passing through a
paint (x,y) and baving slope m s
Y=y =mix-—x)

T Al verimaedenLrly

Let-Q (x, x?) be any other point on the parabola. Thic slope of

¥ coordinate of Q — y coordinatc of P
PQ=3 coordinnicof. Q - x coordiniic of P

_x2-4
) _
The tangent at P (2, 4) is the limiting pasition of PQ as x - 2. Therefore, the slope of the
langent at P is .

. -
.. X" =4 . ,
lim )
;.:,'z x-2 _ .

L D+ 2)0 - 2) . )
=lim —————

= N +2)=4
TR 2 x—2 -:!-ranz(x )

The equation of the tangent line \".'ill be'(y —d)=4(x -2), -

" Now, how do we draw this tangent? Just mark the point P* by moving a distance 1 unit from

P, paralle] 1o the x-axis (o the right; and then. moving a distunce equal fo 4 units parallel to
the y-axis upward. Join I’ 1o P” as shown in Fig.4. The coordinates of Prare (2 +1,4 + 4),
Thé resulling line will touch the parabola o P, and the stope of the tarigent st P = tan 8 = 4.

; E & I} Find the equation of the tangent ta the following curves at the given points.

W) y=I1Mxar(2, 1/
by y=xdar(i, 1)

..

In this subsection we have given a precise definition.of a tangent 1o a curve. We have also
seen how to draw the tangent to o given curve at at given point, Now let us consider the
second problem mentioried at (he beginning of (his scction,

3.2.2 Rate of Change

"Suppose a particle is moving along a straight fine, and covers a distance s in time t. The
distance covered depends on the fime (. That is s = 1), a funclion of time. Wiien the time
changes to t + 8, the distance covered changes (rom ity =10 f(t + &) = s + 8s. Therefore -
weain spy. that 8s is the distance covered in the time 8t We want 16 know the average
velocity of the pariicle during the tim¢ interval 1 to 1 + 8t(ort+ 110+, according as 1> Oor
t<0). '

. s L Tolul distance uavelled
Now, the averafie velokity = ‘

Tatal time laken

Thercfore, the average velocity in the time interval {1, t + &t (or [t+ t,t]).

o 1 b

TTEE T




- RLeBO-T0) s+ Bs) - s s ) S Differéntiation
STUE SIS e sn-1 & e '
Ss= F(1 + 80) — (1), -

‘But this does not give us the velocity of the particle at a particular instant t, which is called
the instantaneous velocity. How do we calcutatc this?

To find the velocity at 1 particular time t, we proceed to find the average velocily in the time.
interval [t, t + &1) (or [t+ t,t]) for smallcr and smaller values of &I,

If &t is very small. then t + St is very near t and so the nvernge \rciocny during the time
interval §t would be very near the velocily at t. it seems rensonable, thercfore, to define the

+ 8t)— f(
mstanlnncous vclocny attimettobe lim f(l_)__(_l
810 &

Thus, we have - , f(l+ -
_ ) “ lv= lim ———
B0 ot

where s = f(t} is the distance lravelled in time 1. Comparing this box with the one given al
the end of the last subsection, we find that the concepts of the sfope of 4 tangent and the
instantancows velocity arc identical, Further, velocity can be considered as the rate of change
of distance with respect to time. Se, extending our definition of velocity to other rates of
change, we can say thal if a quantity y depends on x according to the rule y = f(x), then the .
rate of change of y with respect to x can be defined as
o f(x+8x)~-f(x) -

lim ——————— . : '
&—0 &x
Example 2 Suppose we want to find the rate of change of the function f defined by
f(x)= x;l-S axe Roatx=0,

We shall first calculate the average mate of change of fin an inle'rval_[O. 5x].
This average rute of change of [in [0, &x] is

[0+ sxj - £(0) - £(8x) - f(0)

" {0+ 6x)=-0 5x
Ox 5
_chcc. the rate of change o[‘f ot 0 whicl: is the limiting valuc of this avcrage rale ns
.0x =0,
i f(0+ 5x)~T(0

= jm ————=——>== lim l=.L : .
B0 bx &0 ' :

Example 3 Supposc a particle is moving along a straight line and the distance s covcred in

time Uis given by the cquation s = (1/2)%. Let us draw the curve represented by the function s

= (1/2)1%, measuring Uime along x-axis and distancé along y-axis. Lel P and Q be points on

the curve which correspond to, =2 and t, = 4.

'We shall show that the average velogity of e particle in the time interval [2 4] is Ihe slope

of the line PQ and the vclocny attime t, = 2 is the slope of the langcnt to lhe curveatt =2.

The eurve represcnted by s = (lﬂ) is a parabola, as shown in Fig. 5. P and Q comrespond to
the values t, =2 and t,=4 of t. Now 5, = (1/2)1*=2and S (1!2) ;2 = 8, Therefore, the
coordmalcs of the pomts Pand Q are @ 2) and (4 8), rcsPcctwcly

8-2 en=3,
2

'T"hr_- slope of PO =

" Also, the distance tra\rblled by the particle in the time (t, — 1 )is s —-s, =8—-2=6, - » -
Therelore, the average velocity of thz paruclc in the time {1, —1 )15

distance-ravelled _f _ o . .

A = f2 3. . .
time taken ‘ " 8t may be positive or negative

Hence, the slope of PQ s the sume as the average velocity of the paniclc In the nmc '

{1, -1

"Further, to calculate the slope of the tangent aL P, we choose a point R(2 + 81, 5 {2 4 ﬁt) )on

the curve, neat P. Then the requjred slope is lim (slopc of PR), .. 55'
bt — @ : .
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Sl X
45 200 1 2 3 4

'2 Fig, §
[ .
o 7@H-2 sty
lim — = m ———=1
-0 (2+8D-2 Br—0 280 )
And, what is the velocity at (,2.h isas“mn 3s/0L, vhich is again equal 10 2. Thuy the velneily al
° [ .
t, is the same as the slope of the tangent at I

Remark 2 i) Example 3 is a particular case of the general result: If the path of a particle
moving according to s = {(1) is shown in the ts - plane and if P and Q are points on the path
which correspond to t= £, and 1 = tn then the average velocity of the particle in time {t,~1,)
is given by the slope of PQ and the velocily at time t, is givea by the slope of (e tangent atP.

it) Distance is always measured in unils of lengih (metres, centimetres, fect) and so velocity
¥ really means v units of distance per unit of-time. The slope of the tangent isa -
dimensionless number, while tie velocily has the dimension of length/time.

Now you can try some exerciscs an YOuIr own, .

-E 2) A particle is thrown vertically upveics in the air, The distance it covers in time tis'
‘given by s(t) = ut — (1/2) gt wifexe'u is the initial velecity'and g denotes the acceleration due

lo gravity. Find the velocity offhe particle i any lime (,

E 3) Find the rate of change of the arey of o cirgle with respect Lo its radiux when the radiug
is 2 em, (Hint: Express the arens of a circle us a function of it radius first).

e §




Differcntiation- .
E E 4) Find the average rate of change of the function fdct'ncd by f(x)=2x*+ 1, *o’-x € Rin- erent l',z-.‘o". .

Lhc tnterval [1.} + h] and hence evaluate the rale of change of fatx = 1,

3.2.3 The Derivative
We have scen that the slope of o tangent and the: vate of growlh hnve the same basic concept
“behind them. Weon't it be belter, Lhen, to give a separate name o this basic concepl, and

" ‘study it independently of its diverse applications? We give il the name “derivative™.

Definition 1 Leat y = {{x) be a real-valued function whose domain is a subset D on R, Let
xe DI
C Kx+8x)-T1
* lim -S--——-x—?——-—-(-ﬂ exists, lhen il i.~; calied the derivative of [ al x.
Ex—0 8x
Now, if we wrlte {(x + 8x} = y + 8y, then derwutwe of { = lim &y/6x . Here 8y denotes the
- ehange in y caused by a change 8x In x. &—o

The derivative is denoted variously by £(x), dyfdx or DI The value of f(x) at a point x is

The notation dy/dx it doe 1o Leibmlz
denoled by £'(x,). Thus, _ and '(x) is dvé 1o Lagrange (1736 -
f(xy + dx )= (xy) 1813),
f(xo)— lim
§x—0 &x
. flxy + 8x)- fix )
- IF; in lhc exprcssmnl (x y= lim -We wrile
) Gxwb - ax :
Xrdx=x,wegetSx=x—x, and Bx 5 0= x - %,
-f'( = 1 - B(x) = f(xy)
{x )= lm ———
0 =, X - xu

This is ap gllemm_we'cxprcssinn for the derivauve of £ at the point x,,

Remark 3 In this definition x and ¥ are real numbeérs and are two dimensionless numbers.
.. -If x and 'y are dinensional quantities (lengih, 1ime, distance. velocity, area. volumc) then the
- derivative will also"have a dimension. For convenjence; we shall always trent x and y as
) dlmeuslonless teal numbers, The appronrinte dimenslons-can be added later.

Cautlom *dy’ and *dx* in'the expression dy/dx are not scparnte entitics, You cniinot cancel
‘d” from dy/dx to get y/x, The notation-only suggests the fact that the derivative is obtained
as aratio.

. When I(x) exists, we say thal [ is dit¥eretiable {or derivablé) at x. When [ is
T diffcrchliablp'al cach pgintof its doniwin D, then [ s said to be a differentiable function.
"Fhe process of obtaining the derivative is ealled differentintion. The funciion £ which
I" associates to cach paint x of D, the derivative £(x) at X, is called the derived function of I.
Thus, the domain of the denved function is [x € Dx £'(x) exists).

The pracess of finding the derivative of a funclion by actually calculating the limil of the
o+ By - (k)
Jitp -—m*-—-—*- in maiicd g ivventainsy from firsi principles,
. Aswe shall sec later, it iz ol alwisys recessary 1o find a derivative from the first pinciples.
" We shali develop certain ritles which cua e used to write dowa the derivalives of some
functions withoul acun!ly finding U limit. Some such rulcs arccontained. in'the next
scction.

3.3 DERIVATIVES OF SOME SIMPLE FUNCTIONS .

Inthis section we shatl {ind lhc durivatives of same simple funcuons like thc constant . 57"
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/% is not defircd far x < n.

s¢

function, the power function aud the absolute value funclion, We shall illusimte the methed
of finding the derivative by the first peinciple meilod through some examples,

‘Exampled Letf: R — R be a constant function, that is, f(x} =c forall x € R, c‘IJc‘ing a
. real number. We shall show th is differentiuble, o its desivative is zero.
- f{x +8x)—(x )
Now, lim M = lim === lim 0=0
" Ex—= 0 8x Gx= ) 8% ° Ex-bd

Hence, a constant function is differentiable and its derivitive is equatl 10 zero at any point of
its domain,

The result of the above example can be seen more easily geometricalty. The constant
funetion f(x) = ¢ %x € R represents the steaight fine y=¢ which is parallel 1o the x - axis
{Fig.6). I we join any two points, P and Q. on it, the line PQ s parailef 1o lhe X - axis.
Hence, the angle macle by PQ with the x - axis is zern, This meins 1he slope of PQ is

tan O = 0. Since "(x) is the limit of this slope as Q = P, we get ['(x) = 0 for afl x in the
domain of I,

&
v
C
0 X
Fips b,

Example 5 We now show thal, if n is a positive integer. then D{(x") = nx"<,
In order to obiain D(x"), in case il exisis. we huve to determine

o (x+EhY -x"
lim ———————
h =0 h

Nolice that we have used the letter h (instend of our usial 8x) to denote 1he small change in
“the variable x. We arc, in [act, free 1o use any natalion; bul 8x and h arc the more commonly
uscd oncs.

n
Lo kEdy ="
Im —
h= @' h

(x" & nbx? ' + +h") s ! ial | :
= lim S — (by blonomial ihearam)
h— 0 T

= fim { pxt e 2O D) . h"_l}:

h- 0 2
n-i °
=nx
The result of the above example is very useful. We shall show later. thal —Id- {x"} = nx"~!
(x
for all non-zero x & R even whei nis o negative inleper. The result also halds Tor all x > (8
iR i BRY ROG-EOIG IOt miineben O Conusu, 1 e 2 45 i AT = 3 Ve i fenee, DIxT = O for

alt x &€ R, This means that (e resultis wivintly trie for n = 0. Neveriheless, right now we
are in o posilion ta prove his resull for n = 172, That is,
i

s A
= 1 -1 , _ , ,
FEANREY J=15)x 77 and this we'do in the [oflowing esample. -

Lample 6 We shall show that the function { defined by f1x)= VX | x > 0 is ditlerentiable.

((x+h)~F(x) - ¥x+h—w
—_— = hm e

We have, Iim
! hT.o h h-30 H] .

P it




Caim (b -V (Ve b e VE) o
0 n(¥FT R + Vx)
lim {(x +h)-x
h_mh(\'r—_ﬁ + \f_)

llm _____ 12

‘The result of our next exampte is of prent slgmﬁcuncc. Rl:t!ﬂll-lhnl. in Sec, 2 we mentioned
that thiere are functions that lnve no wngenis ot some poinl (or equivalently, have no
-derivartive there), This example will illustrate this I"\cl Before piving the example we give
some definitions.

R’ (@)= Iirﬁ St b= T@) Griy exists, is called the rigltt hand derivative of f(x) ul

b0 h o _ . Tw 4+ h)—1(a)
x=aand is written as RUOG). Likewise, L' (a} = lim —_— is called the left
T

hand derivative n?!'(x} ol x-= o and is writien as LI (a) 17 (a) exists, we must have
RF(ay = LI (a) = "¢a) (See Unit 2, Thearem 4),

Example 7 The Tunction ' R - R delined by f(x} = | x Lis not derivable at x = 0 but is
. derivable at every other poinl ol its domain.

4
Y

¥

Iip. 7

Fip. T shows the graph of this function;
-To prove that the given function is not devivable it x =0, we have to show thal

" lim M‘:M does not exist. i fact as we shadl see, REQOY and LICOY boh exist, bat
=g '
they are not <.c|u.|l

fo+nl=fo _ . |ul

Now RE“(M= lim lim, -= | (sincelhl=hforli>0

. _ Lot h Wit D

And ]_,.f'([)) = lim Mf_.l___[ = lim .I.E_i =-1 (sinzelhl==htorh<f)
hno- I Ll h

Sherelore. RIFOY = 152 =1 = LIY0). Hence 7(0) does nol exisl. We shall now show lh:ll [hc
funclion is derivable al every other poing
First, Jes % > 0. Choose 4o that $h 1< x. This will ensure hiar ¥ + > 0 whether h = 0 ar

h < 0. Now,
. G+ h)y—1f(x . c 4+ |- [x
hm ¥__(.._J_= |““ h_M_l.
=0 h . h—+g h

. X +h=x
= im ————

h=p h
= lim hfh= |

h—ap

Thas I ig denivable at x, and "Gy = 1 lorol] x > 0.

You can now cuinplele the solulion by solving T 5).

Differentiatlon”’ .
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“"Elaments of Dilterential

. Zaleulus . - -E ES) Showthaty=Ixlis derivable and ['(x) = -1 avall points x < 0.

T E & 6) Show that each of the following functions is derivable at x'= 2. Find F(2) in e‘a_ch- case.

)f:R—=Rgivenbyf(x)=x

by £ R — R given by f(x) = nx '+ b where a wwl b are fixed real numbers.

‘B E7) Find dy/dx, wherever it exists, for each bf e (otlevring funcuons:

Dy By=lx+l]  oy=vVirsl.nz=l

‘o

-

- T ey




. prlnt:lples That is. each time we have c1lcululcd51|mn
a

So far we have oblained dcrlvmwc-: of certain lunctions by dtfferenualmg frem the first
f(x+8x)-((x)

&

But Lhe proccss of tnkmg limils is not an easy operation. Tt can become a very lengthy and”

comphcmed affair. In the next scetion we shall sce how to simplify the process of
. differeniiation for some functions.

3.4 ALGEBRA OF DERIVATIHVES

3302 . - : .
Consider the function f(x) = 3_"_;._35._ Il we try to find the derivative of this funclion

) I‘rorn the first principles,we will have 1o do lengthy, complicated culculutmns However, a-

" close look at this function reveals that it is composed of several functions: constant

functions like 2, 3 and - 1, and powey functions like x, x? and x%, We already know the -
_ derivatives of these funcuom Can we use this knowledge to find the derivative of f{x)? In
this section we shall state and prove some theorems which hc]p us do_1ust lhur

3.4, 1 Derwatwe of a Scalar Multiple of a Function

Letf: R - R be a differentiable function and et ¢ € R. Then, consider the function
T oy= ef(x). We call this function a scu!ur multiple of { by ¢ {see Unit 1), The derivutive of y
'w:lh respact (o x is

(ef)(x + hy-cf(x) _ cef(x +h)—el(x)

i .
- hl—To . h I'lh—arr:J ~h
) flx + )= 1(x)

=_lin ¢
h= g h .

. f(x+h)~f
= e Ilﬂln '—(-E—-)—--—(-” (b)} Theorem 3 of Unit 2)

=.c!"(xl)
Thus, we havc just proved the following theorem.

L4

Thcorem 1 I fis a differentiable function and ¢ € 1 then cl‘ls differentiable and

(ef)(x) = cl'(x).

Example 8 To d|f|'crcnuatc y =7 1x iwe apply the scalar multiple rule obtained in Theorem ..

ol a]l points where the I'uncnon I'x | is differentiable and bct

lel)—‘i—{lxl)

Bul in view oI‘L‘xnmpIc 7, when x 0. -—- (I % 1) does not cmsl thn x>0, T AxDh=1

'andwhcnxc:o d (le).-—l v

I Thcrcfnrc, -_r_—(’Hx Y= 7-—,‘-—-1'!:([)
_u'.\ i ux

Fwhen x > 0
-7 when x< 0

and d_ {7 Ixl ) does not existat x-= 0.

- Note: In example 8 we have uscd the fact that if £'(x docs not exist at a point then (cl’) (x)
also does not exist at that point.

Try the following excreise now.

Differentlstigh”
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(F+g) {x} = f(x} + g(x)

62

E' E 8) Diflerenlinic the {ollowing, using Theorem |.
a) (SN b) 5V'x

3.4.2 Derivative of the Sum of Two Funclions
Lel fand g be differentiable funciions from R 10 R. Let us examine whether [+ ¢, the sum
of the functions [ and g. i differentiable. Now,

T+ )R+ )= (M3 e Xx)
lim ,

h =0 h .
- lim {fx+m+px+h)=lx)-px}
h=0 h

G- glx+h)-g0x)]

=i IS
hl_r.r:’ L h h J
oo T + )= 1(x) g{x +hi-afx)
= lim ——m—m—— ¢+ Im - ———
=1 h h—t0 h

= (%) + g'(x)
Thug, we liwve proved the following ;

Theorem 2 The sum of (wo diffetcutiable functions f and g 15 a differendable funclion and
(F+) () =)+ g'x) v e R -

The above result can be easily extended 1o a finge sum, that is,

) d Cer ‘ dl dr, dr,
. — + L T = o —— b L L, —_
dx( 1 2 n) dx dx dx
where f, ... o Fare dilfereniiable functions.

. Remark 4 From Theorems | and 2 it follows that if £ and g are differentinble functions. then
[~ g is ulso a differentiable Tunclion (since £ — g =1+ (- g)), and ([ - g)"(x) = £°(x) - g"{x).

Let vs see how Theorem 2 is useful in the following example.

Exunple 9 To differentian: 352+ 315 -9, we apply Theorem 2, and get.

A axteaix ~9y=2L (G L Lo
dx ' dx dx ) =

\
Y " S \ \
Now, ,—(L(Jx') = 3515--- un view of the theorend
dx A

=3 2x=0n
d o, (B

AR A R I
45 tx

1! .
ind -J;[ = 9Y = (Ngee Faample 4,

Thus, l—;—l_—(.’ix: +4lx -9 =65+ 41

You are now in it posilion e solve this exercise,




E E 9 Difl‘crcn[i;lle. the followina:

a) x4+ 2

b)u,+ax+ :I:x: F ok xtowhere g e Rlovi= L2, .

Ll ksl

_ - 3,4.3 Derivative of the Product of Two Functions
- Letfand g be wo differentiable functions on R. We wani 1o find out whether their pratuct
'ﬂ-fg is also differentiable.

fg(x 4 hy—-fgx)

N
o h-m h.
) )= 1(xipix)
= lim -
h=0 h
_ {flx+h)=T(xgx+M)+{akE +h)—px}} &)
=i - . h

{We have added and subiracted 1(x) a{x + 1))

f(x + h)— f( -h)- g
h—)n.{-m_“-‘m1 glx + h )} lim {Ml f{x )}

1|—H)
. x4+ h)-o
= ltm .—.-—.-..Llﬂ lim L(X+h)+ lim M l(x)
h=p h Iy = | h . Il—an

{Ref. Unit 2, Theorem 33
= F(X) g(x) + g7(x) [(x)

'I‘hus we gel the followmg
Tlleorem 3 The product of 1wo differentiable functions is again a diffcrentiable function nnd
2its dcnvnlwc al any point X is given by the formula,
-« (Y () =I'(x) glx) + £(x) g'(x) :
" We can extend this result to the product of three dlffcrcnlmblc functions. This givesus -
(Egh) (x) = F{x)g(xI(x) + x)g'(xIh(x) + )N’ (x) i . !

“You see, you have to differentiate only one function at a time, This result con also bes -

................ H !
. catuiided (v e product of any Nniie miainger of differentiable functions, Thus, it fl, v Tooas

- differentiable functions, then,
(ff,. ... 1Y) = I"(x)f (x) .. f(x)'+ F, 006 ()F(x) .. f(x) o R . (%)

- Theorem 3 is very uscl’ul in simplifying calculations, as you can se¢ in the following .
« example. .

 Example 10 To differentiate {(x) = x‘(x + 43 we take p(x) =23, h(x) = x + 4. We hu\wc.=
f{h) xHx + 4) = p(Oh{x) )

Now, &/ (x) =% (%) = 2 and W(x) =3 (x + 4) =1.
o dx tx

Dlfferentlntlon
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*- Thus, () = g0Oh(x} + h(x)g(x)
=2x(x +4)+ 1 xx?
= 2x% 4 8x + x?=3x2 + Bx

Remﬂrk 5 You could ulso have differentiated x?(x + 4) without using Theorem 3, as,

follows:
X*(x +4) =x7 + 4x?
' Thcn.l'orc —l {x*(x + 4) =4 (x3 + 4x2) '

(x )+ -—- (4x ) (By Theorem 2)
=3x2+ 4(2x)= 3x?+ 8x

This shows that the same function can be differentiated by using different methods: You
may use any method that you find convenient, This observation shiould also help you 1o
check the correctness of yourresnlt. (We assume that you would not make the same mistake
while using 1wo different methods!)

E E 10) Using Theorem 3, differentiate the following functions. Also, dlffcn:nnale thesc
functions without using Theorem 3, and compare the results.

a}x\/“ b} {x° + 2x* + 5)2 A+DE+D(x+3)

3.4.4 Derivative of the Quoticnt of Two F Functions
Let ¢ = fjg, where f and g are differentiable fu,nclluns on R, and g(x} # 0 forany x. Then,

iy, B a1 + h) = ¢(x) = 1im (/g )x +h) = (I/g)x)

L= h [ h .

_liml{t'(x-l-hJ t‘(x}}
T hmo WL EOCFID T )

g{x) fix + h)~ I(x) g{x +h)

=hli_rna hg(x) g{x + ")
f(x+h)-f p(x -y
£x) (x‘+ 1{) (x) - ) p(x+h)~gx)
= lim ‘ : h

hop ) glx +h} g(x)




Ag‘ .sn_n:_._m and subtracting f(x)g(x} lrom [he nurmerator)  * ' Differentlation

f(x +_;.|2yv gx + W)~ g(x)

1 -T :
_ H,__u.ﬂ.mﬁi (x) ~h Hv .
- :.:m.Q + h)—glx) .

_ h=p

__BTEA:, .::LE&- bim E%ﬁﬁzé% g
_ b= h= . h E
B lim g (x +h) :Emo& - :

h=p h=)

_ B (x) ~ f(x)p"(x) : :
(x)

Thus, we get the following.

Theorem 4 The quotient ffg of 1wo differentiable (unctions.Fand g such that g(x) =0, for
any x in its domain, is agnin a differentiable function and its ﬂ_ozﬁ_:,_n al any point-x is
given by the following formula :
B (1)~ 1(x)g'(x) .
]
(g(x) i
' This can also be written as ,

hh numeralor v
denominator
En:on::.:oa (derivative ef numeralor ) - (numerator) (derivative of denominator)
{denominatory®

(t/gY (x) =

We will obtain an imporiant corollary to Thearem 4 now. - ) .

Corollary 1 If g is a Tunclion such that g(x) # O for any x in its domain, then

df_1 Y_-g'x) . . . ’

axg)) T 2

x Lg% (£(x) |
- Proof 2 Tn the result of Theorem 4, (ake [ 1o be the constant funclion [. Then f'(x)=0 for
“allx t
Thereflore, .
ﬁ H u = T = m?ﬁ;?ul vaw . wheref(x) = I,

.mmxv glx) mmﬁxuv . .

gx)X0-1xg'(x) =p'(x) .
3 ]
(ex)) (g(x) _

mun::u_n 11 ‘We shail now show :3.% x") = nx"!, where n is a negative integer and .

X 0. We :m,_.o already Eoéa this result for a positive integer nin Bxample 5. . Co-

Consider the function f; w/ [0}— R given by f(x) = x™, wherem e N, Then
f(xy= 1/x™ %x € R, Thus, f = 1/g, where g(x) = x™ forall x € R, x # 0. gisa ..__:.a_.n_._:nEo -
_.cnn:o: and p(x) # o il x 0. So, exeepl at x = 0, we find that

, =g’ {x : S
F(x)= L ﬁnu {from Corollary ) . . :
. - {g®}) .
— m
= =— (8" (x)=mx"" by using Example 5) ;

O ,

. - - _.:H:.l._ ||_._._¥::_I_
. ...nn_.:

Denating =m by n, we get f(x) = x", and {'(x) = nx" -

Mx..,::_._n 12 Let us differentiate the function f given by f{x) = (x7 +2) / (x* + 2x)

ycmnu: wrile 1 as the quotient m\.__ E__n:“ g(x) = Q-M +2) msn_ Be(x) = x? + 2x, _ :

Now, v g0 = L L @)= 259 40222 .

>
. Also V{x)=2x + M.
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']‘hcrcl'orc; )=

h(x)g” (x)— g{x)h’ (x) o
SIS N .
(2 2x) (= 2/5%)— (x4 2) (2% + 2)
‘ (.\:l-i-Zx)2

-l w2
-dx —6x T—dx -4

n
(KT 4 ANY

~(4x + 4 444 4+ 6x7 -

E E11)Differentiate
' 2% 4+ |

'
x +.5

a)

c) &_‘3 + :;Xz
4

x =1

(xz + 2% )2

» ]
b} 2
a-khx +cx® + dx

7 where a, b oo are fixed real numbers

£ ¢ 12} Obiain the derivitive of 1/{x) by dilTerenzting Mrom first primciples, asswning (hat

1{x) += O for any 5,

S T




. 248X 4 7x7!
| B3 Differentinte 1(x)= 22T
. x

by three different methads,

3.4.5 The Chain Rule of Differentiafion

The chain rule of ditferentiation is a rule for dilferenlinting a compo e ol funetio. .
(Ref. Unit 1), Ttisn remarkable rule which helps us to differentinte comiplicated fupctions in
an casy and clegant way.

We establish the rule in the lollowiny theorem.

Theorem 5 Let y = g(u) and u = [(x). If both dy/du and dufdx exist, then dy/dx exists and 18

. dy _dy  du :
-given by — = 2w -
& d dx  du dx '
Proof: We firsl note that y = g(u) =gf(x} = {goN (x}, so thal y is the composie function gof.
We are given that y, regarded as n function of y, is differentiuble. We want to prove (sl y,
regarded as o function of x, is also differentiuble. To do lhis we musl show 1hat Eiimlayfﬁx

: Y

exists, where By is tie change in the variable y correspanding 1o a change 8x in the varinhle
%, Now, 6u, the change in the value of u corresponding to a change 8% in the valpe nf v ix,
given by Su = f(x + 6x) - f{x).

~Wehave lim Su = lim [iu_ 8;:) .

Ex—0 o0\ SBx

. B .
= lim — x lim 8x
B OX =0

=—‘:|?><0=0

This means that u = Qas8x = 0

We assume lowever that 5u s 0,

Difterentlolion
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of Differentlal

by - ) ] d
This implies that lim LA lim 27 exists and is equal 1o o
. =0 68U Bu-b Su du
Sy B
Now, % = —é% g—: , tnd we know that
dy  dy "L Bu _ du
lim w—=—"— and lin —=—
B0 OU U San Ox  dx

Hence, we get

du

. B ) ] ]
lim _y_= lim —y,- lim —
b0 BX  §x—n du Bxm 0 S

T du dx

Hence dy;’dx exists and is equal lo dy/du X du/dx.

Yot may find it more convenient to remember and tse the rule in the following form:

Ifh(x) = g{(x) ) is the composite of two difl'creniiablc functions g and f, then h is

' dif[crcntiablc and i'(x) = g"(f(x))f"(x).

To clarify this rule let us look al the following example

Example 13 Here we shall differentiate y = (2x + 1) with respect (o X,
Letu=2x+ 1:Theny = (2x + 1)* = v,
Now y is a differentiable function of u and u is a differentiable funclion of x. dy/du = 3u?
and du/dx = 2. Hence we can-uise the chain rule to ge! ﬂ. = _d..Y_ du
s, da dx .

=300 25 6ud =602x + ()
You might be thinking thar there was really n.. accessity of using the chain rule bere. We
could simply expand (2x + 1)* and then write the derivative. But the situation is-ngt always -
a3 simple os in this example. You would apjucciate tie power of the chain rule afier using it
in the next exonmiple, ) :

Example 14 To-differentiate (x? £ 2x2 - [)'®,

lety=(+2x— )™ and letu = (x’ + 2x* = 1), Then y = y'®

Since dy/du and du/dx both exist, and dy/du = 1004® and dufdx = 3x? + 4x, herefore, by
chain rule, dy/dx = dy/du. dn/dx.- -

=100u”? - (3x? +4x)

c= 1000 +2x7 = 1) (35 + 4x)

Can you really attempt to solve the above example without using the chain rule? Don’t you
think the rule has simplificd matters a lot for you? :

Instead of introducing u explicitly each time while appiying the chain rule, afier a little
practice you would fing it more convenient jo do away will: it and arrange the working in the
above example ns follows: ’ :
2,0
dy  d(x + 2% - ] d , a
=, = 5 —— (x +2x" - 1)
dx d(x? +2x7 1) dx

= 100 03+ 252~ 1P (3x2 4 dx)
) )
=100(x* + 2x3 = 1) (3x+4x) ,
Our next example illustrates that this rule ean he extendad 1o theas funstions,

Example 15 To differentinie [(5x < 2}2-4-3]‘. wewrile y = [(SN+ 22+ 31 u={5x + 2)2 + 3
andv=3x+2
Then y = u'and u = v*+ 3. That is, y is a function of u, 1 i o function of v, and v is function

© of x. By extending the chain rule, we pel

dy _dy du dv

dx  du dv dx

This gives, _ “
dy/dx =4u”- 2v.-S=40u"v

=40{(5x +2) +3] (5x +2)

T -

e




Tl'us cxamplc 1llusu-alcs that there may be sitations in Whll:h we may go on using chain tule
for a function of a function of a function ..., and so on, This perhaps ]uslIch ihe name
“chain’ rile. Thus, if g, ... g, and hare funcuuns such that I = (g,0g0 . . - og,) (x), then

Il'I(x}=g'|{32°---dE||(x)) 32(33 ce®8g) (.‘K} ,\_l{gn)(x) s.. (x)

'_ E 14) Find dy/dx for cach of the fellowing using the chain rule:

S . ,
S gy @xt3)

.
, : olos+s7+@x+57}
1+5% + 7% I+ (2x+3)

3.5 CONTINUITY VERSUS DERIVABILITY |

We end this unit with the relationship of differentiabilily with continuiiy, which we have
* studied in'Unit 2.1In Sec, 3 of Unit 2 we proved that the [unction y =1 x | is continuous
*+x & R. We have also proved thit this lunction is derivable at every point except al x = Oin

e Exomple 7. Tlns meaons (hal the function y=§ x | Is continnous at-x = 0, but is not derivable af

. - that point, Thus, this shows that a function cai bc contlnuous at o point without bcmg
derivable at that point, However, we will now prove that if ¢ function is derivable at a point,
-then it must be continuous al that peint; or derivability = continuity.

Thm = 1wl e Funan —~ =
. Recall it & funclion fizanid oo continuoueat 2 P"‘"' x iflim HY.\ ff\ U‘l
x=r Ko

Theorem 6 Let £ be & function defined on an interval 1. If [is derivable at a paint x, € 1,
" then it is continuous at X,

Proof: ' 00~ f{x,)
1f x # x, then we may wriwe f(x) — f(x )} = ﬁ-— (x —x,)
. - ) 1]
o . f(x) - f(xp)
Since f is derivable at x;, im. ——5—— eXists and equats '{x ).
" A=k L 1]

.Differemiation
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Thus. taking limils as x = 5, we have,

lim |l(x)=fix,)]
ES -)h"

[reo-reg)

= [im SR LT F Y
x -} ,\” o= '\;', ")
fx) = 1i(x
= dimeeecne s im (A - X))
A=ag A= '\“ LR ( o

=I'"(x") x{}=10

Therelore. Tim l'(x-)- Iin;l I'(xo).—_u
! X=thy

Y

Thatis, lim {x)= lim I'(xnjzl'(x"}
AR A Ny, :

Conscquentiy. I'is continuous af x,,

As we'have seen. the function v = | x Fis continnss bo 1ot verfs able s maly one potnt,
x=0. But there wie some comsinuous functions which are nat oris ahle mlitely many
points. For instance. Tnok w Fip, &,

70

E

-

L) ) 1]
S 1 2 3 4 5 6

"Fip. &

It shows the grapli of a caminuous fimetion which is no derivable at infinilely many poinis.
Can you murk thosc infinitely many points at whicls this function is not derivable? You can
lake your hint from the graph al the funclion y=Ilx1.

The situation is. in fact. nuclt worse. There are functions which are continuous everywhere
but differentinble nowhere, The discavery came as i surprise 1o the nineieenth century
mitthemitticians who believed, till then. that i€ a function #s sa badk that i1 is nat derivable at
any poini. then it can't he so good that it is continuos every point, The liest such function
was pul forth by Weiersirss (although he is said to have allzibuted dhe discovery to
Ricmann) in 1812, He showed thai the funclion lgiven by (x) =% b cos (" mx),

n=il
where 0 is an odd inleger and bis a positive constant beiween 0 and | such that

ab > [+ 31/2, is u function which is conlinuous everywhiere, bur derivahln nowhere, 11 will
nat be possible for us 1o prove this assertion a1 s slage, -

Sometimes we use Thearem 6 1o prove tht a given function is conrinaous 1 8 given puint.
We prove thal its derivative exists at that paint. Ky Theorem & hen, the conlinuiry
automalically follows, :

A0
L 15) Is the function [ [01] -3 R ; ) — (2% + 3)

, conlinunus il x = 0,17
1y 2

= e




' 3.6.SUMMARY

We conclude this unit by summarising what we have covered in it
"1 For any finction y = i{x)
f(x + §x) = £(xX)

Colim — —— 7 (it exists) is called e dcrlvnlivc of [ at x, denoted by (x).
Ex=( 5x

The function §* is the derived {function. The dcrwanvc {"(x) is the slope of the 1angent 1o
- the curve y = f{x) at the point {x, y), The derivative also pives the rate of chnnge of the
function with respect to (he independent variable,

"2 The derivative of & constant function is 0.
. d n =1

— (x™) = nx",

_dx o)

.whcrc n.is any i:.h.gcr (nd x#0ifn<D),

(\l_) EFJ

.3 The t'uncnon ¥ =1 x1is derivable at every point excent af x = 0.

~

F.

(e’ = cf’, c a constant.

Ergy=t'+g

gy =r'-y

(fg) = fg 1 gy

ey = £ 12 1¢

ot

(gol)’ = g'(R).f*
5 Every derivable function is conlinupus. The converse is not true, that is, there exist
" functions which are conunuom bur rot differentiable.

3.7 SOLUTIONS A i ANSWERS

En'._.'-n) d_-‘f’.' " Equation; (y - 1/2) = (~ 14) (x - 2)
&y 2 or x + dy.= 4
d v
-ﬁcfi_-x= | =13, _ Equation : (y - 1) =3(x = 1)

ick 2} w=defilt=u - i
A ] .

i !I =2 = 4
Ed}  average rate of ¢ e ol Fm |l F+hi=

(T = 1) 200 40Y 4 1= 2x 174 1)
- = A4 2

E3 carca= A =R

h ]
fha =1

rae ol change ol Fan x s [ = Jin ~——=- 22200 yorahy MY bo pasitive GF HERANVE

I on h

= dun (5 )=
I_l--{l

Disarentintion
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[Z 5)

E 6}

EN

E8)

EY)

E10):

E11)

E12)

[Fx<O,choose O< oo fthen 8 « k<0l
o Ixd hl-ls!

lrm - — =
h- h h h

Thll\ 00 = =30 x <0 L s derivable Torx < 0,

NI DR R O BN

2 =m— x|

. . ”-’ih} H Aoy =
a) P 2y= dim -2 == lim = h-2 . ]
o fl I - )
i o |{"+I1).h—||\"ihi .
b) " (2)= lim - |
b L
uh
= lim — =g,
bt B
dy (e hy -t . 1 .
) === |im —-——— = 1im I 3alR Iy pe= Ik
dx h= 1} h e ld
By x> -lx+ | =Mchosse b =0l his a1,
Px a4 §i=-1x+ 11
then x 4+ 1> 0 and hm ——————
S0 h
X +h+0)={x+1)
) T N S
h- i1 h
. AR R LK B RN S
Irx <=1, lim =
Bt h .
Thus dy/dx exisis when x > - [ ar wheo x < —1. [1 does not exist when x = — |

smcch"(—])— Tand LI (-1} =-1.

CYox e ) o]+ Vox 4 ]
\(2(5( + ) +1 + V28 + 1
_ lim 2 . ] '
- o0 V2(x + h).+1 + Vox+1 Vax .1

a) LE;‘.,J)_ S e

Sy dim -\(2(x+h)+] - Vax ¢ 1
9 x ~ hov h

dx V3 ERTH _x'“-_q"
b) (8\/') o (\’ ) =.-=-
g} 15«2 b)a, + 2.12x + ..y s

) 'i (K ‘H) = (3;2)\/;= x(l x--u-z) o VX
=+ 28 4+ (53" + 6x7) + (5" + 6:22)(x* + 21 + 5)

=20 + 2% + 5)(5x* + 6x2)
€} dyfdx=(x+2) (X +3)+ (x+ DX+ +(x+ 1) (x+2)

?.(x+5)—(2.\_'+l)_ Y

2 3.
Tx+ 5 {(x+5)
- {b+ 2cx 4 3dx:)

ay-

b} - .
(v + bx +ox® + oMY

(x* = D6x?+ 6x) - 2x" + I )4y

c) 3
(-

_Gxft (' - 1) - 4xf(2x + 3)

(x* - 1y

1 |

- d ( L TS
— ——== lim _—
(%}

ax e t) ]

sror i
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T+ v) =
PP R A KA (AR T P Gl [
[8 + X6)E = S+ XGH 1L (S +X0) + {5+ X €9 =
6l Ny - 0¢) ag = Npfep
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asiine n=a'g+¥p=n 2

I ggxa-
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UNIT 4 DERIVATIVES OF o
TRYGONOMETRIC FUNCTIONS

Structure

4.1 Introduction 74
Objeenives . '
4.2 Derivatives of Trigonomelric Functions ) 74

Some Uselul Limis
Derivatives of Sin x und Cos x
Derivinives of ollier Triganamelric TFunctions

4.3 Derivalives of Tnverse Puneiions - 80
. The lnvcrsc_ Function Theorem . .
4.4 Derivatives of Tnverse Trigonometric Funclions a1

:Denvatives of Sin*' x anl Cos-' x
Derivatives of See™ x and Coseg' »

4.5 . Use of Transformalions . g5
4.6  Summary : ) 87
4.7  Soluliens and Answers . : 88

4.1 INTRODUCTION

In Unit 3 we have introduced the concepl of derivatives, We have also talked about the
akgebra of derivatives and the chain rule which help us &, zaleulating the derivatives of some
complex (unctions, This wil will take You i step furter in your study of diflerentinl
caleulus. )

In this unit we shall fiest find (he derivatives of standare r-igonometric fuhctions. We shall”
then go on 1o sludy the inverse function theorem and jis applications in finding the
derivarives of inverses of some standard functions. Finally, we shall see how the use of
transformations can simplity the problem ofdifl'crcnliminglsonm functions.

Objectives

Aller reading this unit you should be able 1o

@ find Ihe derivatives of Irigonometric functions {
® slate and prove the inverse function thearem - .

® usc the inverse function theorem to find the derivatives of inverse trigonometric functions ‘
® use suilable rinsformations 1o differentinte given lunctions.

4.2 DERIVATYVES OF,TRiGONOMETRIC FUNCTIONS

‘I rhis seclion we shall caleulate the derivatives of the six rigonometric functions; sinx;
COS X. Ll X, coi X, 8¢ X anel cosee X, You already know thal these six functions are related
to each ather. For examyple, we have:

i)sin®x +cos"x = 1 i) tan x = sin x/cos x. and many more identitics which express the
relationships belween these functions, As you will soon see, our job of finding the
derivatives of all trigonometric (unctions becomes a lot easier becavse of these idewities,
Bt let us first evaluale some imporiant limits which wil] prove to be very useful luler,

4.2.1 Some Uselut Limiis .

; - Sm . .
I the next subsection we shali come across lim -l—l and lim sin L Selet’s try (o caleulate
1N 1=l -

these. Far this. we firs assume thal ¢ < 1 < /2 and consider a circle with radius. | unit, given |
by x* -k y!=1 as shown in Fig, |, i .

The line OT passcy through the origin and has slope = tan (, Therefore, we can wrile its
cqualion as ¥ = x tan . Thix means that the y-coordinate of the point T is Lan (, since its

x-coordinate is §,




§

Fip. 1
Fram the figure we can see that
‘area of AOPA < arca ol sector OPA <aren ol AQTA ... .. (1}
- Now, the arca of AOPA = 5 x. ] X PB.=

-

ism 1,

—l—xlxr.—lt
2 T2

The atea of OTA =% % 1 X tant L
Thus, inequality (1) ¢an be writien as:

" The ared of seclor OPA =

sint<t<tant..... 1)

Since 0 <t <7/2, sin t > 0, therefore, from the lefi-hind inequality in (2) we get

O<sinr<r. .. .. (8)]

Now, il =172 <1 <0, then 0 < -t < /2, and applyimg 3y o =, 0 < sin (' -N<—1lor
0<—sinl< =L since sin{—1) = —sin 1. This means that if - %2 <1< 0, thent1 <sint <0, . AR

. I | | ] ]
sin1 [ 2 B | sin T i

@ : Flg.2 ()

. In Fig. 2(z) and (b) you can see the representation of (3) and (4). respectively.

We can combine (3) and (4) and write

S =llesine< U for —f2 <1< af2, 120, _

'_ -You have seen in Unil 2 that lin}) I'LI= 0. From this we ¢an also say that lim — 11 1= (1,
Mow applying the sandwich 1Il\_t;orcm (Theorem 2 of Unit 2} 10 1he funcliiuL?— Il sint
and | t],

" we gcl' Lthat !in'(l] sint =0

1=

We shalt use this result to calculate lin cost. As you kaow, cost = 1 = 2 sin? 172, This means
1~1 )

Hm cost= lim ¢l - ?2sin® /2)
1= Q i~ l)

1= 2 limsin " /2 -
1= I»

=1

Thus, we_get -Iin';l cosl = |,
. (]

Now, lel's gel back 1o inequality (2)% sinl < ( <-ant.for O < 1< 72, Since 0 <1 < nf2, sinl >0,
and therefore, afier dividing by sint. {(2) becomes:

Derivatlves of Trizonomelirle
) Funetlons

IT the sectorial angle 1s 0, the area of
a seclor of o circle of radws ris

(12)ro

ilere we are usmg varions resulls
alwsn e ocder velation froan o 1.

We can prove st iun sud 112 =0 by

L=all
using Thearein 3 of Unit 2 and by
unting that t = ez if2 o 0

e ]
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- lim sintft =1

"Remark 1 In li“;ll —— =1lor .IIEITB cost = 1, the ungle t is measured in radians. Ifin a
[ -

i <tfsinl < |fcost .

orcost <sintt < F .. (5),0<t<xnf2 Lo

Now. since sin(— 1) = ~ sin, we sce fhat sin (= 13/ (= 11 = smifk. This, alosgwith the resuk
cos(— €) = cos1, shows that the ineggality (5) holds cver when - 17/2 <1 <0, Thus,

cost <siMA <1, —nf2<ten2, 120"

Now, lef us apply the sandwich thearem 1o (he fanctive< .. 1 sinift and ), and ke 1he
limits as ¢ = 0. This give us:

=1l)

Exnmple 1. Suppose we wani (o lind out

. Ein 3x . S§in 5x .
lim =—== and lim “—"-
=0 X v S X
.oo%in 3x . I i
Ler us fiest ealenlale II"L =" For this we shall wrire ="-’"Q-3 Mo ﬂﬂ_‘—:!i % 3. [l we
1=y x

replace 3x by tin the right hand side, and ke e Jimit as x — 0, we find thal t=3x also

.S 3x 0 wmint
tends 1o zero, and lim = im = 03
b l
=t 0} =30
. Nint - -
=1 ]Irl;h = {Sce Thearem 3 of Unjt 2)
=k i) .
=3
To calculate lim -ﬂll-s—x we start by writing
a0 sin Tx
TRELE L ¥ E O S
x—0 5in 7x x—0 3x sin 7x 7
3 lim sin Sy . Tx
= T |jm oA, -
Taan 5y o sin Ty )
=3 since lim ".—L( =— --i---—.:."-= | by Theorem3 of Unit 2
7 L=t sin Tx line g 784y
=il

sin t
t . .
patticutar problem. ihe angles are measured in degicees, we have 10 [irst converl thesc 1nto

radians before using (hese formulas. Thus,

int® sin (ri/180 s 80
]im .s_“'l!- = li]‘n .H_[EI-_(..{ ._..}. = _l.[._ il . E_H'i"(_]"t[{] ..-_). =. .Ic..
-0 | =y, l 1RO o TS 180 i
"See if yau can solve this exercise now. ) §
E 1) Provethata) lim cos(a+ x )= cosa
L= . ;
b) Hm sin (- x)=sina
=0

4.2.2 Derivatives of Sin x and Cos x

We shall now find out the derivative of sinx fram the firsi pringiples. If y = {(x) = sin x, then
hy definition '




< dy L osin{x +h)— ‘:II\ X . Derivatives of Trigonometrle
= TFunclions

= lim — s

X han .k

C 2Ty con {x o0 WD
llnl T T T T

h=2 0 h 1
. Rememher she fonnula sin - sin 13

- sin (2 (ACBY (A
h]l._l"l'lﬂ v .IE." cus(\ I hf2) - w2 02 e P2

1 2 cORX = cosx

il

li

Thus, we pel
d ooy
~— {sin x)=cosx
L fsinx;

Now lcl us consider the funclion y = f(x) =cos X and find its derivadive, In this ease,

dy : cos(x +h)~cosx
’ im
dx he 0 1l
] ~2 sin {1i/2) sin (x .+ W2} ~
= lim . .
_h= h

=-lim singly/2) lim sin (x - 1/2)
h=0 2 nen

=-sinx

Thus, we have showa that
' -—d—(cost =-—5inx

dx

d

. -Actually, having first cnlculmcd iy (sin x ) .ve could have found ous the derivative of cos x

by using the formula;

cos X =sin {x + n/2). This gives us,

d d . ' ' ' ' 2, x

"= (cosx) = ~— (sin (x + 7/2 {sin (% + 1/2)) = cos (x + =/2)

dx ¢ ) dx (sin € . f. )) ' ’ cn}\hcpmvcd hy uxing, the chain

=cos{X + m/2)= ~ sin x rule.

In the next subscetion we shall find the devivatives of the ather four trigonometric functions
Ly using similar formulas. But before that it is time to do some exerciscs.

E E 2) Find the derivasives of the fnllnwmg
. a) sin2 x b) cos?x ¢) Ssin’ x sin3x d) %% cos 9x.
e) cos (sinx).

T
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vdu fdx -\ v fibx

2

4.2.3 Dexlvatives of other Trigonometric Functions
We shall now find the derivatives of i 1an X i) col 5 iii) seex iv) cosec x,

sin X
i ey = =an- :now that lan x = =2
i} . Suppose y =I(x) = tanx. We know thas cos x
dy (qm X3
— = tan x)= .
Hence. dx’ d { )= dx cosx /
cosx dAdx (sin x) — sin x d/dx (cqsx )
Cﬂ.‘i: X
: =-,|:032 X + sin® X _ 1
T cos?x cos? x
s : =see? X

ii} Now,suppose y = {{x) = cot x. Since cot x = 1/tan X, we gl

4 _ .8 ( _L_)
dx feotx dx \tan x
_tan x dAIX0) = 1 d/ds (Lin .’9
B mn2 X
2

= 5CC
————x =- COSE’: X

- - tan?x

iii}  Now, lel y = [(x) = sec x. Since we know that sec X = |fcos x, proceeding as in i), we

pet

S X
d (scex) = —1-(—-[—) =, M3 - seer tan x
dx dx \cosy cos? x

IT you have followed i}, ii) and iii) above, you shoulkl not have any difficully in finding the .
derivative of cosee x by using cosce x = 1/sin x. :

E'- E 3) Show that H (cosecx'J:‘— COSCCX COIN .

TG 1T R ¢ .

Lel us semmarise oor resulls.

-

Table |
.. Mmction I . L. Derivinive _l‘I
_ i
sin , cos X
cos X ! - §in X
tn x . J[ sec” X
col x . - cosec? x
HCC X . j Sce X Liny
CCISCIE: X : — CO5SCC X col x




Remark 2 Hcrc again we note that the angle is measured in radions, Thus,

. TN Tl: mx X
d (S”‘""}“ ( |3u) T80 °°5(180) T80 o08¥°

.We shall now sce how we can use these results to find the derivatives of some more
complicated functions. The chain rule and the algebra of derivatives with which yowmust
have become quite familiar by now, will come in handy again.

Example 2 Letus dlﬂ'crcnmtc i sec® x ii) se¢ x tan x + cot'x’

i)

ity

Lety = sec x. If-we write U = sec x, we get y= ul, Thuq,

gy, dy

==L, 8 — 347 cecx ranx
dx  du dx
. = 3sec’ X 1 x
If y = sec x {an x + col x, then,

g

v

: I
= {secH tlan x )'-I-'E:; (cotx)

Cdx T odx

d d . 4
= SCCX-—— (fun X ) + 1O X —— (seCc X ) — cosec X -
dx ( ) dx ( )

= secx (sec® x -+ fan® x )— cosec? x

Remark 3 sin x, cos x, sec x , cosec X arc periodic functions with periad 2. Their
" derivatives arc also pcno(hc with period 2m. lan x and cot x are periodic wnh period w. Their
derivatjves are also periadic with period o

We have been considering variables which are dimensionless. Actually, in practice, we may .

have to consider variables huving dimensions of mnss, lenpih, lime etc., and we have (o be
carcful in interpreting their derivatives. Thus, we may be given that the distance x travelled
by a.particle in time tis x = a cos bt. Here, since bt is dimensionless (being an angle), b

- must have the dimension % - Similarly, x/a = cos bl has to be dimensionless. This means

| ) L] - - . - .
- that aimusthave the same dimension as x. Thal is dimensior of a is L.

Now dx/dt = ~ ab sin bt has the dimensjon of ab =L X 1/T = L/T, which is not uncxpccled
stnce dx/dt 1s nothing but the velocity of thut p.tmclt. ,

Sec if you con do these exercises now,

) B 4) Find the dcrivauvcs off . °

a) cosec 2x b} cot x + eosee & c) Scot Ox

Derlvatlves of Trigonometric
Funellons
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4.3 DERiVATIVES_OF INVERSE FUNCTIONS

We have scen in Unit | that the graphs of a function nnd its inverse are very closely related
1o each other. Il we are given the greaph of a function, we huve only 1o tnke its reflection in
the line y = %, 1o obtain the groph of its inverse. Tn this sectjion we shall establish a relition
berween the derivatives of a funclien and is inverse,

4.3.1 The Inverse Funetion Theorem

Let us take 1wo functions [ and g, which are inverses of euch other. We have already seen in
Unit 1 that in this case, gof(x) = g([{x)) = x, for all x for wliich [ is delined,
fogly) = {(g(y)) =y lorall y for which g is defined. Now, suppose that both f and p are
differentiable. Then, by applying the chaib rule 10 dlfrcn.ntnte Bf(x)) = x, we ger -

g ENF Y= Torg’(y)hi’(x) =1, where y = f(x). -
This means that if (x) # 0, we can write g°(y)} = I/I"(x). So we have been able (o find some
relation between Ihe derivatives of these inverse functions. Lel us state our rc-:ulls more
‘precisely..

Theorem 1 (The Inverse I‘uncuon Theorcm) )

Let f be differentiable and strictly monotonic on an interval 1, 17 £7(x) = 0 ul acertain X in 1,

lhcn iy differentiable at y = I(x) and .

( ) = Ir‘f’{x)'.

Thus we have Ihc inverse function rule:
dx [ -

" ] {(y)=- or o= — -

YT ( x)' dy  dy/

The derivative of the inverse function is the reciprocnl of the d(.rw.tllvc of the glven

function.

Soon we shall see that this rule is very useful if we want 10 find the derivitive of a function
when the derivitive of ils inverse function is already knowa. This will become elear when
we consider the derivatives of the inverses of some standard functions. Bul first, bet us use
this rute 10 ﬁnd the desivative of f(%) = x', where r is a ralional number. In Unit 3 we have

alrcady pmvcd that g (x") = nx""L when n is an integer. We shall.use this fact in proving

dx
the general ease.

Theorem 2 If y = f(x) = x, where v is a ralional number for which x* and x ! are bolh

defined, then A N = '
dx

Prool‘ Let us first conslder the ease when r = 1/g, ¢ being any non-zero integer. In this case.

= {{x)'= x", Iis inverse funcl:on g will be given by x = g(y) = y4. This means .
-1

dy =g'(y)=qy .
Thus, by the inverse funciion rule, we get
dy 1 !

ax dx)‘tly-= qu'I

S S
i ]'1"|

q(x '
I B —tq~1¥y
m ——— X
Tn-1

‘qx n=litg q

! {drq)-1 r=1
==X =X -

q -

- So fur, we have seen that the thearem is true when ris of the farm 1/, where g is an inleper,
Now, having proved this, Jet us take the general case when v = p/q, p.q € Z{y is. of course.

non-zero). Here,
¥ = f(_\c) =xf=xM

So, L oray _ d oy

dx dx dx




. Iiq,P Hq#=' d W . D nllvcs f Tri
Now, i(x q) = p(x q) .(_(x q},by chain rule i criv. of Trigonainetric

dx dx Fonctluns
_ _ p(,xuq)l-—l (1/q) x0AH-1
= (/) 0!
Thus, .
=Ly a0 =

This compleles the proof of the theorem.
The uscfulness of this theorem is quite clear from 1he following cxample.

Lxumplc 3 Suppose. we-want to differentine
11l
= )

Wc wrile 1 = x¥¢ +~/x. This gives us, y = u''*
By chain rule, we gel

dy 1 s Cann-1 [5 isiey-1 | ~uz)
ay 1 - kR + Ly
RETT VE) 7 5 X

Thus,

%}Xz RIS _\/-~mm s V6 4 -1y
X

Why don’l you try these exercises now?

"E E5) Differentinte 1 ,
a5k xh B) (X — AR )xC

4.4 DERIVATIVES OI'INVERSE TRIGONOMFTRIC
FUNCTIONS

Tn the last section we havelseen how the inverse function theorem helps us in finding the
derivative of x™ where i is a rational number. We shiall now use that theorem to find the
derivatives of inverse igonometric functions.

We have noted in Unit 1, Scetion 5, that sometimes when a piven function is nat one-one,
. we con still talk about its inverse, provided we restrict its domuin suitably. Now, sin x is ) 3
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for -nf2<icnnz.

Remembar, sin*'x is nol the same as
(sin x)' = LAin x or sin x* = sin 1/x,
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neither a ene-one, nor an anlto function from R 10 . But il we restrict its domain to
[-7/2, 1/2), and co-domain to |1, 1], then it becomes a onc-one and ento function, and
hence the existence of its inverse is assured. In a similar manner we can talk about the )
inverses of the remaining irigonometric functions if we place suitable resirictions on their:
domains and co-domains. | ’

Now that we arc sure of the existence of inverse trigonometric fpnctions, let’s go ahead ond
find their derivatives.

4.4.1 Derivalives of Sin~'x and Cos™'x

Let us consider the function y = {(X) = sin x on the domain [- #/2, 7/2). Fig. 3(a) shc':ws the”
graph of this function, Its inverse is given by £0y) = sin™' (y) = x, We can see clearly, that
sin x is strictly increasing on (—x/2, 2] - :

Pl

4
Y
YJL ;
S ;
a2 . :
H o Im/2 x Kl o 1x
; i
e - .,1 :
(o) Cm

lig. ®

We also know that the derivative i {(sinx)= cos x evieis and 18 non-zero for all

x e ]—nan, nf2.

This means that sin x satisfics the conditions of the inverse function theorem. YWe can, -
therefare, conclude thut sin™' vy is difterentiable on.] =1, If, and

IR
-(F (sin ="y = ffix) cosx
. 1

Vi-y2
Thus, we have the resulr
' 1

4 sin! g = : )

dt T -

Vi-¢

Fig.3() shows the graph of sin 7 x. '

We shail follow exactly the same gteps to find our the derivarive of ihe inverse cosing
Tunciion. |

Let’s start with the function y = [(x) = cos &, and restrict irs donmain Lo [0, 1] and its co-
domain 1o [-1,17, Its inverss funetjon 20 = cos™! v exists and the graphs of cns x and
con " x are shown in Fig.d(a) and 4(b), respectively,

4
ILY & LY
: i
19 !
] N -14 O 1 >
i
1
1L+ :
() [N

Iiy.!




As In the earlier cuse, we cun now check thi the conditions of the inverse function theoremn
are aotisfied nnd conclude that cos =' y Is ditferentisble in 1-1, 1{, Furiher

d o g ey b1
I (E(Y)). iy (cos™ ¥) To) -~ ~sinx

.z —f---—---—-‘l-.'y_2

. . This gives us the result.
e dl 1=
o o="{C08 1) =——mx=x .
dt ) . 1’ 1 — [2 . )
" Youcan apply these two results to get the derivalives in the following excreise.

‘E'. E6) Differeniate
N a) sin~!(5x) b) cos™! Vx cysinxcos (x*+2)

Derfvatlves of Trigonametrie
Funcilons

Since cos x = ¥, sin x e A— y! oz

E *€7)- a) By Tooking atthe graph of tan x given alongside, indicale the interval 10 which the

domain of tin X should be restricted so that Lhe existence of its inverse is
puaranleed.
B) What will be the domitin ol tan~! x7

.c) Prove 1h'm-di:€- (tan~ ' x )= 1700 + %3 in it domain.

Dexem,

] L) N
i Y H

¥ |
] i
[ [
| '._
: ]
1 1
! 1
{ !
i'ﬂf’z Q- I'I!‘?,{,)E
) :
1 1
1 . :
1 :
: |
} I
1 r
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Reniember, we haveseen thot cos' 1

In this section we have calenlaled the derivatives of sin~ x and cos~' x and if you have done

E.7}, you will have caleulated the derivative of tin~'x ulso. Froceeding along exactly similae:

tines. we shall be able 1o see that

d , 1 . =1
ey fcot  x)=

X 1+ x

2

4.4.2 Derivatives of Sec™' x and Cosec™'x

Let's tackle the inverses of tlic remaining two triponemetric funclions now.

To lind sec ™" x. we proceed ax follows:

If y = sec™ %, then sec y = x or 1/cos y = X, which means that 1/x = cos ¥. This gives us
y=eos™! (1/x), where, [x 121,

Thus.'y = sec ' x = cos ! (1/x), 1% 12 |

Frem this we get

is defined in the interval |- 1, 1) .

dy _:d (os! :
ax = dx (cos (L/x)
- . ‘I ] d_

i (_ I;’x?‘)

Vx2 . 1.

1
= x>

X 1Vt w

i

Note that although sec'x is defined Thus, we have

forlx 1 L, the derivative af sec™' x

does not exist when x = [

34

|

-d—(scc"x) = e x| 5}

d VA

E = 8) Following exactly similar sleps, show thal

'di (cose¢ x)= ;1—
x Ix V& =

Ixl =1,

Example 4 Suppiose we wani 1o find the Jeiis ciive of y o= aee! 3\/@;

| TP e .
IJ’ WEILTIE] PRI, VYR 1;‘.'

dy i Ao g
I T E (sed ' 2/%)
} { i
= — (2V X}
2x Vax - 1""( "
1

|
= M -
wWxvax 1 Wy
)
_Zx\"flx'— 1




Now, you will be able io solve these exereises using the results about the derivalives of
inverse trigonometric functions. )

E =9) Differentiat,

2 - col™ (x + 1)
a) cot  (x/2)

b i ———
) tan~ ' (x + 1)

i -1 _xsin@
¢) cos (3% +‘_4J d) sec (I—xcose]

ey cosec ! (x+ 1)+ se¢! (x = 1)

f

4.5 USE OF TRANSFORMATIONS

Sometimes the process of finding derivarives is simplified fo a Jarge cxlcnt'by making use of
some suitable transfornmations. In this section we shall sce some examples which will

illustrate this fact.

Example 5 Supposc we wanl 1o find.lhe derivalive of

y=cos™! (4x* —3x)

Derivatives of Trigonometrie
TFunclions
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As you know, we can differentiale this function by using the formulu for 1he derivative of
cos -* x and the chain rule. Bul suppose we pul X ="cos 0, then we gel

cy=cos™' (A cos*G-cos )
= cbs™' (cos 36)
=130
= 3dos ™' x. Now thix is a much simpler expression, and ¢un he differentiagd castly as;

(cos A =dco’ - 3o @)

dy -3

ST
X ]_xz

o . -l '\/|—+ o]
Example 6 To diffcrentinle y = tn™ | ~—
This gives us,

y = tan"'[ I+t - l}= ";n_TsccG— I)

TY lan B

ot L= cosﬁ) - m_l[! - (I - 25in’ em]
U sine /7 2sin 0/2 cos 0/2
=t (o 6/2) I )

-1
Lan X
=0f2==_2.
/ 2

dy I
Now, we can write -~ = —————
2145y

Let’s 1ackle another problem.

2%

Example 7 Suppose we want to differentiste ™ [ - —T-‘-—,—J wills respect 1o sin™’! (j—k-a] .
- l-x" 1+ x

2
. =% | %
s shali use the transformation x = tan . This gives us

. _ 2
y = tan ! (T._'ln:;e) = tan ~' (tan 20) = 28, and
= Liih

- 2x .- 2x - "
For this, let y = tn 1(—1L] and z = sin I(- ——-——\—-3- ] Guraim i< 1o find dyfdz. We

.j il - - ‘|
z=sin”" (_ﬂg_] = sin ~'(sin 28) =20.
14 wn” 0 . -
Now if we differeminte y and z with respeet 1o 0, we gel dy/d0 =2 sl dafld = 2.
dy  dy/dd

=Tl [o y — Sr—— = |,
teretore v d#/d0 I

Alternatively, we have y = z. Mence, dyfdz = 1,

So, you see, a varicty of complex problems can be solved eusity by using transformations.
The key ta a successful solution is. however, Ie choice of i siirable transformation. We arg
giving somc exercises below, which will give youi the necessiry prictice in choosing the
right iransfomation,

E E 10) Find the derivatives of ilic fallowing Munctions wsing sutable vanslormutions

a) sin™!'(3x - 4x?) b) cox™' (1 - 2x2)

I Iy gl 3y - ‘.3 F
c) sin”'! —"—k—,-] d) 1an '(--'3-—-_\?-
T+ x 1=3x" )/

¢} co¥ '(

PR i Y

r
-] e lise the trunslformation x = tan 6.

ST rem b |




Now lcl us summarise Lhe poiats coveret in this unit.

4.6..SUMMARY /

In this unit we have
1 caleulated the derivatives ol trigonometric funcuons:

- 2

Function ] ’ Derivative - .
Csinx - : - .cOsX
Cos X ) -sin x
fan x - gegt xh
cot x . . —cosectx
- see X set X lan x
cosee X - “COSCT X COf % -

2 discussed the inverée function theorem and
used lhe rule

. d r-’ i

— ([ (x))= ———

dx i &)

to prove that dfdx(x") = rx™', where'r is'a rational number.

3. used the inverse function theorem Lo, find the derivatives of inverse [rigonometric
funcrions: -

Derivatives of Trigonomelric

Functlons

87

171 T O TR R T T L




R E!,c'm-cnls of Differentlal
Calculus

' 88

function Derivalive
s —“._—_I.,::: el x <l
Vi3
cos'x . = . =lex <]
V1 - x2
I .
tan”! x —- .58 R
4 X
-1 ‘
col'! x o A2 R
[+ x-
1
sect x mptertnall 1 =
IxWx2 - i
N . I
coscet X etz sl e
xIVx? - |

4 uscd transformations to simplify the problems of finding Ihe derivatives of some
functions.

4.7 SOLUTIONS AND ANSWERS

EI)

E2)

E3)

"Ed)

Ea)

E7)

a) cos (A + x) = cos 4 .cos X - sin fsin x

lim cos{a+ x)=cosa lim cosx — sina lim sin x
5= 0 x~+ 0 % =4l

b} similar =cosa

a) 2cos2x . h) 2cnsx.:|%-.(r;nsx Y=- 28in X cosx

2) 5(3sin’x cos 3x.+ Tsin® x ¢os X §in 3x)
= 5 5in® x (3 =in x con 3% + 7cos x sin 3x)
d) 3x? cos Ox — 9x* sin 9x i

e} —sin {sin x)cos x

d di 1 sin x X 0 - Jcosx
-d-f(cosccx)= Tk : = —
X x| sinx sin® x
CO8 X
== ——— = —cosecx coly.
SINT X

o) - 2coscc 2x col 2x
1

b) - cosectx + —m———— { - coscex cotx)
: Y 2casee X
. ¢) —45cosec” Ya.

53k + -:—'x"-"”}

B 25 - WX)s -J-_.\c2 (%.\;"”5— ;‘,x""'"’}

g = - )

Vi - 2sx? ( wWx ¥ L x

!

. N Y,
e} s X + Co§ X cos (X4 N

! \ 7
VI = {x"-r2)

a) tan X reswicted o ] - /2, 12 is a surctly increasing one-one function of X,

Thus, its inverse exisly when restricted to | = n/2, 1/,

bY The damain ol un™ x5 | = ro, =],

=Tty




E 8}

E9)

Loy

E1D

<)y Ify = 00 = an x,

_ I-
M"(x)  sec’s  I+y
I

. "

14 x~

o !
dy‘(hm ¥

Henee dfdx {lan -t )=

y=cosec 'x =pcosec y =X =% siny= lfx =

y =sin”t (X} where I x12 |

Thus. f-l—}-'- -4 sin” U »
. dx dx
e
S AISITEE
|x| “
= —=—=(- I/x7)
V2 1
= —=L >
kIV¥x2 -1

-1
2)y —————
21+ x/4)

—tan~! (x4 I][ L -_7]— col ' (x + i)[--——— ! ,)

IR ll+(x-+l)'
b} - - _
(ta! (x 4 1))
Q) —"-—5"__“_.—"1_
1 - (Sx +4)
[ E [ sin O(I—xcnse}+xsinacnsﬂ:\
| xsing | x? sin? 8 _1|_ (I-xcosBY
- {1 -x cosB]| (- xcose)z
- ]
] l +

x+ 1N+ D21 Ix- 1V (x-1n2-

a) Pulx =sinB@= y=sin (3x ~ 4x%)
=sin~' (3sin B — 4sin* )

. =sin~'(sin3 B) = 30 = Isin~' x.

dy__- 3
oy

b) x=cos 02 = y=cos™ (I - 2x?)
cos el - Qe B/2)
= y =cosy’ (-cos @) = cos™! (cos(r— )

=n-0=1-~2cos"'x.

dy

2.
&

) Put x = lun 0=y= sin"‘( ‘2}{ ,.): Ztﬂn--lx

AT
day 2

dx 74 x?

4y Pax =1 0

gl  af1-xt ]] 2
—| cos ~||= -
dx 14+ x> 4 L X

Derlvotlves nl‘-'l‘rlgunnme[ric-

Funcilous
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Derivatives of Implicit Funciions

5.6 Summmary - - 106
57 Solutions antg Answers 107

5.1. INTRODUCTION

Exponential functions occupy an important place in pree and applied science. Laws of.
growth and decay are very ofien expressed in 1erms of these functions, In this unit we.shall”
study the derivatives of exponcitial functions. The iverse (unclion theorem which we
stated in Unit 4 will then help us to diffecentiate their inverses, the Joparithimic functions. In
particukar. you will find that the natural expanential function is its own derivative,

Furiher, we shall intragduce and differentiale byperbolic funclions and their inverses since
lhey hold special sipnificance for physical sciences. We shalt demonsirate the method off

*linding derivalives by taking logarithms, and also that of differentinting implicit funciions.

With (his unit we come 1o e end of our guest for the derivaives af some slandard,
frequently used functions. Tn the next block we shall see e geomelrical significance of
derivatives and shall use them for sketching graphs ol functions.

Objectives
After studying thiz uait you should be able (o:

findl the derivalives of exponential and logarithmic Bmetions

define hyperbolic functions ind discuss the existence of thefr mverses

differentiale hyperbalic funciions and inverse hyperbolic funclions

us¢ the method of logarilhmic differentiation for salving some problems

diffesentiate implicit functions und alse those functions wiich are defined with the help
ol a parameter.

D0 O G a

52 EXPONENTIAL FUNCTIONS

Our main aim, here, is 1o find (he derivatives of exponential fonctions. Bul let us Grst recall
the definition of an exponeniial Tunction,

3.2.1 Deftnition of an Fxponential Function

A funetion Mdelned on R by f1x) =, where 2 > 0. is knowiy as un exponential function.
Now 1a find the derivative of £, we shall have 1o ke the limir:

™™ e,
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h—0 It ~ h=a h
! I

]

So, if we put Iim .T =%k, we zet &' oy nat be defined for all x if

h=no | ) ) 6< 0. For example, (-2)7is nol
d-. o . ) - defined in R,
o @ =k, Wecan also interpret k as the derivative of a* at x = 0. Tn Fig.] efinedin R
X .

you‘can sec the graphs of exponential functions for various values of a.
k= ]|m ----—--u e
f0 +h}=-1(0)
‘ = lim -
I =D
= (0)

= h-d—.-(u')

sdr’ £=0

Kig.1 .

All these curves pass through (0 1) as a%= 1 for alj 8. Now [rom all these curves, we shall
choose that onc, whose tangent at (0, 1} has stope = 1. (We assume that such a curve exists).
The value of a corresponding 1o this curve is then denoted by e, Thus, we have singled out
the exponential function : x—3 ¢¥, 5o that its derivative at x = 0 is | . Thus, -

N
tim & =L =y
h =+0 1
+This nlso means that
dc‘ . e‘+h - cl R e (!1 -1 x
— = lim =g, lim =C
dx a-0 b h—+a h

That is, the derivative of this function is the function 'i_tf;clf.l )
This special exponential function is calfed the nafural exponentlat function.

5.2.2 Derivative of an Exponentlal Function .

In Unit 1, we compared the griphs of the natural cxponential functlon o* n.nd the natural
Iogarithmic function lnx and found that they are reflections of each other w.rit, thé line. . -
y =x. {sce Fig.2) We cuncludcd thal = c‘ and Inx are inverses of cnch other. ThlS also mcans

thate™=x yx > 0.

Fig2

‘Y . it .
From Lh:s wecan writea® =¢ , or a*'= ¢"™, wherea >0.

d xina
Thus * dx 3t =

[na" = blna

i. (xIna) by chain rule,

1
: na Ina

=a"Ina. .

91
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Elements of DifTerentlat Remark 1 I we compare this result with (1) which we derived al he beginning of this

Caleulus section, we find that
N
\ -1
Ina = lim A i
Y] 1
Thus, we have
-'%-e’ =e*, and
%nf:ﬂfln n R
Tixample 1 Let us use these formulas to find the derivatives of
p :
2 x -
X . - =1
0 c“ +22) i) cx-i L—x ) gfin T x
e~
g D Lety = Then, by clain rule
d I
Hi'-" =g 2x +2)
2 2
d ( 2 ) .
chcc'd-; gron =2x+ l)c“E !
| ok s o (" ~e7%) ?d;— (e 4+ e} - (e # c")-a%- (cf-e™)
. {1 c _ [
— ") -dx(en _c»:)_ . __‘2 T
‘.du_udv : (¢" ¢
-E"_(.g:)=_.£“.‘_3._‘15.. Ll =™ (e =t ) —(e*+c7% ) (" we™)
X v 2
(¢ -e7)
2 2
- et e (e e
- 2
(e*we™)
-4
. )
(e —e™)"
iii) "We apply the chain rule again to ditferentinte a5t !x
d sin=Ta. - sin-ls _d |
— {a =lna & - (sin 'x
dx { ) ‘ dx ( o x)
. . . = Ina g sin-lx

- x2
See if you can solve these exercises now.

E E_i) Find the derivatives ot:: :

a) SBC‘LZJ Y b) c" e c{x+2) c\c d) g-m! an-1 x c)'zh f) 70
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E E 2) How much fuster is I{x) = 21 increasing atx = 12 than at § = (17

[n this section we have defined ¢'as that real number lor wlnuh [|m

||-|u

Allcmutwcly e ean alse be defined as 2 Jinin:

||~+o-=

! !

= Lim (14 1/0)", or as tiic st of an infinite serics: e= I NI ——

H 2

Buf ali these definitions give the same value, ¢ = 2.7/8281828.... e is an irrational number.

In many situations the rate of growth (of human bieings, or bacteria or radioactive particles)
is proportional 1o 1he present population. Thal is, if x(1Yis the poputation at time t,

dx ' - 4 W .. . d .y |
o then — ce x . In such situations the exponential funciian is of great relevance since T (¢)=-¢.

dt

Mow fct us tum aurattention in logarithmic Munclions.

.53 'DERI_VATIVES OF,_L"OGARITHMIC FUNCTIONS

In Uml4 wé studigd 1hc-. inverse ﬁ.mcuon lhcorcm (Theorem L Unit.4) and-used it 1o find
the derivatives-of v various functions such as sin-1x, Cos"x and so on: Here, 'we shall, yet
again, upply this theorem 1o cftlculmc the derivative of the naturdl” logaridimic function,

.

¢

5.3.1 Differentiating the Natur al Lof Tunction

Cons'ldcr the function y = Inx. This is thc inverse of the :nmral exponeitial funcuon that is,

= inx if and only if x =¥,

From Fiv. 2, you can see that the natural exponential function is a strictly increasing i 1s defined on 10, s [
<~ function. (You will be able Lo rigorously prove this result by the cnd of 1his course). Furiher,

the derivative.of ihe function x = c*is

CAx _ d (c’r)-c >0!0rnllch
dy - cl .
Thua. all the conditions of the inverse funcuon theorem are sausred T|JIS means we een - -

conclude that the derivalive of the natural Jogarithimic l‘uncuon (whlch is the inverse of the

natural caponenl:al function) exists, and

dy o | 1 11
e H(“”‘ Wy I TN
Thus, we have . :

d 1
— (Inx) = —
d.x( )=

Let's see how we can use (his resull

Example Z Suppose we wanl 1o differentiale y =.1n (x3= 2% +2). . : 93
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Elemenls of Differentlal dy 1 d

Cplculus

2% is a4 canstant function fora = |,

2
T T TR

- 2x -2

X2 42

Note (hat x* =2x 4 25 (x ~!% o | and henee, s non-zero Torall x. .
Therefore, In(x* — 2x + 2) is well-defined.
bt x

| - x*

Example 3 Il we want (o dificremiate y = In
o cusesi i) [x 1> [andii} x1<1

2 2 2
i) Tflxlbl,wcgm]_u,__= l-1~xz =x1+]'
I-x"] —(=-x*)y x*=)

since [ x I> T makes 1-x? negative. So in this case,

dy X' —1 a4
a T FT ax X -1
=X
[—x* " afler simplificarion,
iy when Ix1<r, [1F ‘f- = —-——" and so,
| =x" I =x~

[ ? 2
dy l—x _cl_ I+
tx ] 452 dx ] —x2 -

1—-x

by
o forall x sueh that [x 1.

. dy
So, we see that —=
dx

Now, let us turn our attention to logarithmic Functions with arbitrary bases.

S.S.i Differentiating thé General Log Function

Lel us consider any positive number a 2 1. We say log x = y il and only if x =

Venee, it does not bave any inverse.  the nateral logarithmic function fnx ean be writien as log,x,

‘The log funclions are thus defined

anly foro = |.

log, x.
So.ify=logx = log ¢ [nx,
dy d I

T =log,e alnx =log ¢ X

Thus, we arrive ot
d N
o Wos. x) = loge: -

I we put a = ¢ in 1his, we get our earlier resull:

s =L sinee oz ez |
05 0% =5 sinee tog.e=

Example 4 Let us dilferentiate y = log, an’ x

dy | 3
——=log, e — ~— {Lm" x)
s Lot X dx
=log, ¢ Fnx set x
- tiur x
. sec” X
sec” X
=3log, ¢
L x

U you have followed Ihe solved examples in this seclion yon should have no difficuliy in

solving 1liese exercises.
E & 3} Find the derivatives ol
i

9 log,2x ' B) Moy, (55 +2) ¢) e lnx

v Ix 11, we will have to consider

Further, we know that log, x = log_c. Inx. This rule gives a connection between the naltural
and general jopanithmic functions. We shall use this relutionship to find the derivative of

&, Cbviously.
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Id)ln(!ii

5. 4 HYPERBOLIC I"UN(,TIONS

In uppllc".llans ol matliematics to other sciences, we, very often, come across cerlain
combinations of ¢* aud ¢*, Because of their importance, these combinalions are given
special names, like the hyperbalic sine, the hyperbolic cosine ete. These names steggest that
they have some smuhnly with the trigonomelric fuictions. Let's look at their precise’
defnitions and 1y 10 understand the.points of similarity and dissimilarily between the
hyperbolic and the tngonomclnc functions,

'S.4.1-Defm|t!ons and_-,Basic Propertics

Definition I The hyperbolic sine function is defined by sinh.x = __c___—z_e_ forall x € R.
.The range of this function is glso R. -

x -x

. . - . o 4
Duilnition Z The hyperboiic cosine fonclion 1s detmedl by cosh g = '—,j-'—-- foralixe R,
The range of this function is {1, s}

You will nolice thal

. -1 =[-x) . x —-x
- - _e —e L _¢€—¢ .
sinh(-x) = - = 3
= - sinh {x), and
-1 ‘I'-(-‘)' T -
I ¢c+e -
cosh(=x) = - = =cosh x )
(%) = 5 . 95
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In other words, the hypurbollc sine is mn odd functidn, while the hyperbolic cosine is.an even
function, Fig 3(a) and (b} show the graphs of these Iwo functions.

[
Y
i
' i
! .
1 X
L ) -
2 0O 2 X
’ )
n) .
‘I‘ip : Graph of {a) sinh x {1} cnsh x
We also define four other hypcrbohc functions s
N ~ X% X
- e+
tanh x = = —, colhx——~9—,
¢ +c* et -¢*
sechx:—-;——zj. cosech x = ‘2“. I
e +c ©geg

TR

‘E E4) Verify hat a) cosh” x - sinh’x = |

b) tanh x = sinh x
cosh x

¢} i=lanh® x = sech? x.

E E5) Derive an identity conneeting coth x and coscch x.




You must have natleed that the idenrities Invelving theso hypérbblic funciions are similar to
those involving trigonomelri¢ {unctions. I is possible te extend Lhis analogy aikk gel some
more formulas: - )

sinh {x +y) = sinh’x cosh y I cosh x sinh y

: cosh(x + y) cosh x cosh y % sinh x sinhi y

‘tanhX - tanhy

(Y )= T Ty

Since we have seen that cosh®t - sinh?t = 1, it is obvious that a-point with coordinates
(cosht, sinfit) lies on the unit hyperbala: x’ — y*=1. (Mence the name, hyperholie functions).
We have a similar situation in the case of trigonometric funetions. The poinl (cost, sint) lies
on the unit circle: X2+ y? = 1. That is why trigonometric funclions are also called circular

funclicns. ] )

"There is one major point of dilTerence between the hyperbolic and circular functions,
though. While t in sint, cost, ¢tc. is the-measure of an angle, the ¢ which appears in sinht,
cosht, elc. cannot be interpreted as the measure ol' an angle. However, it is somchmcc cn]lcd
the hypberbolic radian, :

§.4.2 Derivatives of Hyperbolic Functions

Since the hyperbolic funclions are defined in terms of the natural exponeniial function,
whose derivative we already know, it Is very casy lo cateulaie their derivatives. For example

L
sinhx = — This means,
4 (sinh x)= -(i-[cx b ] L ek =cosh x
ax ~dx 2 - 2 T
X -% -
Similarly, coshx = &2 gives us
X mn
4 {coshx) = ¢ —sinhx
dx L2
i L ath
-In the ease of tanh x = cx l’_ . we get .
. [l T
d i x) I G T T CRE S Y (AT N T AR )
dx » ‘(0’“ %+ c—l)z ‘
(c + ¢ ") —{c <:"")2
(et e
2
l' (c -t ..
(c“+¢ oy

" -
=1-— [rmh X =srch” X

We enn adopt the sume method lor Minding the derivatives of colh x, sech x and cosech x. [n
Table 1 we hove collecled all these results.

Table 1
. Funclion Derivative
sinh.x cosh x
cosh x .sinh x
2 taphx sech? x
coth x_ ~ coscch? x
sech x — scch x tanh x
cosech x —cosech x cothx -
1

" Derivathves of Some Standnrd
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N

T

0

r
(&)

1
[a—y
—
(1
Ll =

Fig., 4

We hiave used Lhe formula oz
. finding the roots of 3 guadratic
cquation here. Nime that if
7 . . [ -
e=x-N o+ X, MNen &<,
which is impossible. Therefowe we
ignaore this root.

Example 5 Suppose we want to find dy;'dx when ;.' =tanh ([ - x?).

dy
I scch {l -

x%)- —(l x%)

=~ 2x sech’ (1~ x)
Sce il you con solve these cxercises on your awn.
E6) Find f'(x) when f(x) =

a) tanh 4—"511_

b) sinh e2* ¢ coth (1/x)

d)-sech (Inx) e}c® coshx

5.4.3 Derivatives of Inverse Hyperbolic Functions

We shall try to find the derivatives of the inverse hyperbolic functions now. Let us start wuh
the inverse hyperbolic sine function.

From Fig, 3{a} vou can see that the hyperbolic sine is a strictly increasing function. This
menns (hat its inverse exisls, and

y-_:ﬁinll—lxt:#}( =sinhy = ¢ _'Ze '
e Wsd -’
= —ad —1=0
e @) -2z’ - 1=0

¢$c"=x+(1z‘[‘+l-&2)
/v es?)

\—()’—'III\\I RV

Thus sinh=Ix = tn (x + Y% ) % & |-, e In Fip, 4, we have drawn the graph of

sinh~Tx. Now.
%(sinh_i X}= % (lu(x e \J'l + x?.))
x+ V1 + XZ)

‘x.+\’l+x3- dx

S
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= + . . Funcllons
x+‘\’1+>_(2( '\‘1+x2)

— 1 | ' |

T+ x2

d soi=1
Thus, =— ¥ =
us (sinh—'x)

1 1
Y1+ x2 Yx2 + 1
In the case of the hyperbolic cosine function, we sce from Fip. 3(1), (hal ils inverse will exist Y

if we restrict its domain to [0, eof. The domain of this inverse function will be [1 oo , and 2
1ts rdnge will be [O oo[

—

Voot ) . 11
2
e~ + 120
ﬁ_e!' =X+ ‘\[;(ﬁ
' ' Y= ln(x + '\r)'i?'_-.:l.) Agnin we ipoorg i root
Thus DDS‘h_l x=ln (x + \{.32—' 1). Xz, er=x= 'VI 3_ ¥, because then:

. er < |, which is impossible since
Fip. 5 shows the graph of cosh™ x. ) y>0,

‘Now-y ;cosh x & x = coshy =

Flg. 5

d -1 R (I
Furlhc:r-a-x-l {cosh x): (x + ‘\!I 2 ])

= x> 1

g
b | —

1

t e

Note that the derivative of cosi~'x does not exist arx = 1.

Fig.6 (a);(b) and (c) show the graphs of tanh X, coth x and cosech'x. You can see that each
of thesefunctions is one-one and strictly monotenic. Thus, we can talk about the inverse in
cach case. , ‘ _ 4

S (b) ©
Flg. 6
Arguiﬁg as for sinh™ x and cosli? x, we gcll
.y=tanh xc::-x-lnnhy'c:#y--!-]n(-]—%], ixll
y='colh XS x= colh‘} >y = o lu[ h ]) Ix 11

iy -
\'I_l+x2'} - }
———1 x#0

' =1
y=cosech™ X ¢ x =cosechy < y =!n[-;- + =

Since sechx = oh Ve shall have to restrict the domain of sech x to [0, «{ before (alking

about its inverse, as wé did for coshx, Sech™'x is defined for all x @ ]0, 1], and we can wrile

_|- 1+'\!1-—K2
scch x =In X . D<x=1

Now, we can-find the derivalives of cach of these inverse hyperbolic funclions. We proceed
exactly as we did {or the inverse hyperbolic sine and ¢osine [unctions and get . 99
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A ttanh™ %) = ixl<

dx 1-x2"

d -1 f

— (coth "x)= x>

dx ( ) 1 —x?

4 (sech ' xJ = -1 LO0ex<l
dx - ]_xg

4 coseeh " x) == Vxw 0

d’_: . Ix 1~/ 1 +x? )

Let us use (hese results to solve some problems now.

Example 6 Suppose we want to find the derivatives of ) l‘f\) = ginh™{tanx), and
b) glx) = lanh~*(cos e*),

Let's start with {(x) = sinh-'(tan x).

i x)= —_ 4 {tan x)

Jun?x +1 dx

= —— sec x =lsecx |
Isecx |

Now il g{x) = 1ani"'(cos ¢), this means that
1

!
g x)= I_—T; e {cosc”)
1 . x %
= emo— (—sing’) - ¢
sin“¢ -
-t x -x
= — =—¢ cosecc
sme

- We are now listing some funclions for you to differentiale.

E E7) Differentiaic the following functions on their respective: domains.

uy cosech™" (5'\[-) b) [scrh"' (cos? x))'»
¢) coth™! (¢ b ax Ty

dy tanh-'(colh x) + coth*! (2x}

¢) sinb'Yx + cosh™? {2x%)

TR
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5.5 METHODS OF DIFFERENTIATION

In this section, we shall study different methods of finding derivatives, We shall also see that
“the problem of differentiating some functions is greatly simplified by using these methods.
Some of the results we derived in the earlier sections will be uselul 1o us here.

.5.5.1 Derivative of x°

" InUnit 4 we have seen that -ad— (x")=rx""" when ris a rational number. Now, weare in a
S

position to extend this result to the case when ris any real number. So ity = x, where x> 0
rand re R, we can wrife this as As we hiove menlioned in Unit 4, if

©y=1e"™" = ™, since the natwral exponential and logarithmic functions afe inverses of each X <0. %" may not bo o real number.
“ather. . © Feremample._ 3¥7 =  _ 3¢ R.
' dy 44 nx d -
Thus —— = - (e""*)=¢"" = (lnx
dx dx ( ) dx ¢ )
r
. el TX - .
=I6““Y‘="‘i"" =rx" ! .

This proves that

d o r
dx & .)7 =
We are, sure, you will be able to solve this exercise now.
E ES8) Differentiat,

uj aV2 ‘- b)-x®

! forx>0, reR.

552 Logorithmic Differentintion

Sometimes we find {hat the process of taking dervatives becomes simple if we take

logarithms before differentiating, In this.section we shall'illustrate this point through somg 101
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By-~f we mean Uic positive square
root of a.

In {a/b) = Ina - Inb
- In(ab) = Inat 4 Inb
In{a*) = blna

102

examples. Bul (o 1ake (he logarithm ol any quantity we fave te be sure that it is non-.
ncg'ltwc To overcome Lhis difficulty, let us first try lo find the dcrw-nwc of In {I x [}.

Now you can check easily that I x 1= v x 2,
[‘hcrcforc. I x1)=1nvx2 and

Inlxl——ln ‘\r2=—l—- (¥x }
] 1fx2 tlx
ol X _x 1
N RN i :
We get,

Linaxny=4

dx
. oo o . d I d
Using chain rule we can now conclude that if u is any function of x, then i In{lul)= T g

_Let us see how his result helps us in simplifying the dilferentiation of some functions.

(x2 + 1Y x — 3y
(K - s}lﬂ

%+ 1) - Y
G5 e 1y

524 11 1y = 3

Example 7 To differentiare .

o R

we start by (aking y =

Thus, tyi=

afa -1
Ix =51 [x% 25 417

Then 1aking fogarithms of both sides, we gel

1ntyl=|.1(]x=+-1|°|x—3|-‘N)—|n(|x~5|=ﬂ!x=+2x-|-1:-m) _
=X+ LM+ In(lx =3 P%) < In (i x =5 129) < ([ x? + 2% + 1 1)

..-9rn1x2+1|+3|n|x-3|—%1n|x =5k 2in 7 +2x 411

4
DifTerentiating throughout we get,
J:' _c_l_y_"_ _12 3 l . %42
¥ clx FEN A~ M =B 3kl e 25+ 1)
o lEx 3 2 2(x +1)
x*+ 1 _4(x—1‘.) Ix - 35) x4 I)I

._d_ﬁ’.=y 18x i ) N 2
Cdx 241 Mx-3) 3-89 3¢ +1)

4.(“: -|-I}G{K—3)3"4 [ sy .3 2, __2 ]
I R A P e O - A

Example § Supipose we want 1o diferentiae xm, x =0,

Lel us write y = x*™, Then y > 0 and so we can take Iogurnhma of hoth sides (o the basc ¢
and write

Iy = Inx*™ = sin K.In x

Dilizrentinting thranghont, we sot,

'—I—» E)—- = xinx L + Cosh toa
¥ dv X
sinx
= — +cosx Inx
dy 3
S X
Therelorg — = { -+ c,u\\ fny ]
dx X

dy sinef 8inx
or T bt —5— +cosx hi




Example 9 To differentinte x™ + (cosx)*, let f(x) = x* and a(x) = casx*. To ensure that Berivatives of Some Standard
~I(x) and g(x) are well chncd let us resirict thejr demnin 1o (O, 7¢/21. ) . Functlons

¥ =X 4 (cosx)* = f(x)+g{.\)> 0 forx e [0, x/2) _

Let us diffedentiate both [(x) and g(x} by aking loparithms. We have,
() = aem

Therelore Inf(x} = cosx Inx.

Thus - F(x}= = sinx Inx =+ cosx -)].—'

fix)
-'Tll.ll is, 1 (x)=r(x )(— sinx lnx + cn: X )

csx | — X 5iNX Inx 4 casx
=% z

=x**1 (cosx - xginx Inx)

Simihrly. £{x) = (cos x)* andl so Ing(x) =% In cos x

" N LT,
Then --——g (x)—lnco.»:lc F p—— {—sinx)

gix)
= p (x)={cdsx)*(

COSX InCosX — X 5inx ) )
cosx

x-i .
=(cosx)  (cosx Incosx —-xsinx)

chbc,‘d—}" =" (x)+g" )

dx
= x™7! (cosx — xsinx Inx) + cosx*! (cosx Incosx — xsinx) - . s
'If you have followed these examples you should have no difficuity in solving these exercises
by the same methad, .
E E9) Differeniiate, .
a) (=D EEE 20 b) 1

G- 0 -2) (-3
C} (Sin:{)" + (con)r:m

d) (x")*+ x“ k ) e} {sinx)* 4+ x*

a

. 103
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5.5,3 Derivatives of Functions Defined in Terms of a Parameter

Till now we were concerned with [imctions which were expressed as y = f(x). We cailed x
an independent viriable, and y. a dependent one. But sometimes the relationship between
lwo variables x and ¥y may be expresscd.in lerms of another variable. say (. That is. we may

have a pair of equations 8 = o), y = yit}, where 1he frnciions ¢ amd y have a common

domain. For example, we know that the circle x™+y* = 2° is also described by the pair of
equations, x = acost, y = asin, 0 €1 € 2,

Tn such cases the auxiliaey veriable tis ealled a parameter and the egaations x = ¢,

v = y(t) are called paramelric equinions. Now, suppose a (unction is delined in terms of a
parameter, To ablain its derivalive, we need anly dilfereatiate the refations in x and y
separately. The following example illustrates this method,

<l
Example 10 Let us try to find -z- il x = aces 0 and y = bsin 0.
. dx
(Iere Lhe parameler is )
We differeniate the given cquazions w.r.t G, and get

dy dx .
— =beosH, and —=-usin0
do a8 o
a of, .
Now, dy dy/dd beos§ _ _|_l_ ol

Ux _ dxd0  —asin0 A

Try to apply this method now,

E10) Find <X ir
dx
ay x=ucos 0.y =asin D
b) x=ar,y=2u
¢) x=acos' 0, y=Dhsin'0

dV. v =0 —sin M, vttt ~con

o e




5.5.3 Derivatives of Implicii Functions

11 is nol nlways necessitry (o expross y explicitty in terms of x(as in y = (x)) to find its
derivative. We.shall now see how to difTereatiale a function deflined implicitly by a relation

inxand y {such as. g(x. y)=0). - -

' - d
Example 11 Letus I'mdl—i if & and y are relaled by
i

ax? 4+ 2hxy + by + 2gx + 2y + ¢ =0,
Differéntiating throughout with respect Lo x. we pet

Uy dy oy
Jux + 20 -y +2hx-—==4 2bhy =~ - 2p 4+ 2{ ===}
sl y " ix Y dx - E dx

d
or % (2hx-+ by 4 20) =~ 2mx — 2y — 2p

dy —f(ax-+hy+g)
& T Foy D

d
See if you can (mnd I): oz the following implicit funciions.

oo dy
E E [1) Find -ﬁ il x and y are related as follows:

a) x*+y? =l
by, yr=4dax- p
c) ¥+ xiyitxy+ | =0

d) cosx cosy — yisinT'x + 2x¥ tamx =0

Derlvatives of Spme Standard.
Funclions
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Elcmcl-:ls of Dilferentinl
Caleulus
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L
|
g
3
S 6 .SUMM AR Y .
In this unit we have
1 obtained dertvartives of the exunential and fogarithmsic funchions. hyperbolic functions ,
and their inverses. We give them in the [ollewing able,
!
runclion Derivittive [Function f Derivative
; -
cl c!
. : stali ' s
1
inx % L
]! cemee, X 2]
0 atm casli =
\/.‘." =1 '
. [ |«
log x —log ¢ tanh ' sl {
sinh x cosh x
calh™ s oo Ix[=1
cosh x sinh x :
o ; . <y«
tanh s sech” x sech Tx .
T —vosech s : ! : T
i : | .
sechios : el tanh Povieeh s i

~cimech vy catli

1 ! 4 FETTTT I P f
] .
i UJ‘-L'C]I » :
I N |

2 extendid the pesali 24 (v e toadlbie Rl o0
[EAN
3 likised

towerithmic didtereatiaen,
differenticion of funetions involvi Y R AT e

differentauon of lunctions given by implicn el




5.7 SOLUTIONS AND ANSWERS

LB

E2)

E3)

E4)

E 3)

E6)

E?)

E8)
"E9)

2) 5o 5, b) ¢ A (~1/x2)

) G+2eh Lz o

d) c-mll‘nn“x = m
P+ x?

e) 2¥+1[p2

0 7% (- gingn7

Fx)=2"n2 FY=In2
[{1/2) =22 |n2 = /2 102
Hence { increases~ /2 times fasier a x = [£2 (han at x = 0.

2) ')IT|°3;-° @ 1-x (I—x)+(l-’-|-x)
I'l'x {] __x)-
. 10x - 2
B) 7'°g“°[__—5x2+ 2) =500
c) eX(/)~c*nx o) dsin" x cosx
sin” x
. 2 X, g2x 2 Vi aey
a) cos;hxz[=2 e +2 sinh xzb—-i-q—-—z-

4 ! ) - 4
2 . 2
cosh™x —sinh™» = | )

Tx -2z
colhzx -1= .c__ —+...c_+_2. R 4 = coscchzx
e o _ 9 e et g
W) 2 sech ’[i"—ﬂj b) 2e?cosh &
5 5 .
I 2fq [
) — coseqh T d) = sech Inx sanks bnx - —
X

¢) e*(sinhx +coshx)
-1

—1 5
5V N1 25x 2‘!;)_2::‘-’] + 25x

)] -:17 [sech™ (cos'x yJ ™ " ! ) 2cosx sin x
st -“'\/l —cos’x

a)

"0 2.—| , c(:‘+$x-_-6](2x +5)
cz{x +5:—6)_ ) )
2
dQ = cosech x 2_
1 -—colhzx ax i
) 1 ' + 4x
S22Vl i
Ay T2 b) ex =
a) lnlyI=Jnlx"'—ll+6lnlx’+2l+51nfx3—ll‘
1 dy a9y ood2x - 15x 2
Y dx - 2 +2 %o
dy . 2 46,3 Sl 2 12x 15x2
braa AU DN G 3 W ¢ Sl | P =L I ] S
T R o iy
B Inlyl=—Slnlx~11 <6lnlx—21-TIn1x - 31 '
4y . -l ( 5 _r_+_.7_)
dx (x—l}s(x—Z)G(X—'B)? x -1 x—2_x-—3

Derivatlves of Some Standard .
l*unctions |
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Elements af ifTerentinl
Caleufus

145

E10)

Ell

¢ Let [{x) = (sinx)" amd p(x) = (eos x) .
'Il"llcn [ {x) = sina® (I osin X o+ v eon ypand p'(6) = cos 80X (zee’x Ineos x — and)
\i

:?: F(xy + g(x)

d) Let f(x) = (), péa) = x a0
vy =glny =xlny

y
= o= x M iy
dx

Infind=xIna’
- .._-L.... Yew o= b Yok |- ., - -
=2 T Mxy=bx Y a(l +nxy

= )= (x*) nx® -+ x(l 4 Inx 3l

]ng{x]:x‘in.\

| R %t .
=> . )= . T ]
g(x]“:h] < <oy XML E e '
reo. (R T \
= ixY=x [yt T ksl ol
Answer = (X0 1 gtny )
[ T
= (% Hnxt e a4 Inxi] ey s P et nxd b4 s
¢l - Inx i [ [EEINH AN A
e — {8 8 = {80 A ) .{ TR ETRN —e ]
f_II‘ LY WoooF
il Y ~
=X Y=+ il :
tx |
. s HTRNTIRN
Ans\_\'cl' = {xip a) ilnx eany o Pros b ddne v
dx ’ v
0 s o 0, =E = acosl
(]0 HE114] (l( oS
dy dyfd0 0
—— = me—— = =0l
dx dxfd0
1Y 'i;‘__ _a L
x Zal t
ty Issint & cos
c) ..-§_ = __ll\_l"_:l‘_'.‘.“ E!-_ - L‘- i .
thy = Jacas™ D «in U
o B asinl o aind)
tx Al = cosin {1 - vast:
t dy
a) WA W =y o
dx Youdx §
.
. d dy 3y
) 2y = =4 iy
b) 2y t dx N
L iy hy - tly
c) ] Fy -—-)-+"\ yUoe M v Ry gy i) '
3% A5 HY
* I
L
=5 (AN v [ v, ' (O
oy 15\‘.}. Ty Vv
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BLOCK 2 DRAWING CURVES

[n Block I you have learnt sotne lechnigues of differentintion, and have diflerentialed o
wide variety of [unctions. Tn this block we shall use the detivative o explore vacious
peometrical features of a curve, like congavity/convexity, maxima/minimg, tangents,
-normals and so on. For this we will need to make usc of not oniy e first dcrw.mw... but
ulso some higher order derivarives.

Unit 6, the Tiest unit of (his Block will introduce you Lo higher order derivatives, In the
next two units, Units 7 and 8, we shall illusteate how we can find the exact slipe of a
cuzve, when its equalion is given (o vs. You will be surprised at the amatnt of information
which is revealed by the first, sccond and third order derivatives. We shall usc this
information Lo Irace various standard curves in Unit 9. In Unit 9, we shall aiso teli you
how the properties of cerlain remarkable curves rre put 1o use, We shall also ask you to
‘trace some curves yoursell. Do try and trece them by systematically following the
procedure which we have cutlined in Unit 9, We are sure, Lthat aller reading this block you
will b aware of the presence of many of these curves in the abjects around you, as also in
nature.

We have also made a video programme, “Curves”, which you can sce after going
through this block. This programme is available at your study centre.

Also, after studying this block, you should altempt Assignment 1 of the course. Pleasc
subrmit your solutions to the assignment to your siudy centre coordinator, ind ask her/
him for the evalunted assignment after a month.




NOTAT.ONS AND SYMBGLS

-?I-y; vy, T (%) the fiest derivative of y or f(x) w.rl x
-:-:i-; vy, B f.ht-r second derivative of y o 1(x) w.rt, x
ﬁ * o, (%) the nth dcril\ralivc of y or f(x} wrl. x

= is alpproximnlcl)' ¢qual to

Also see the fist of notations and symbols ip'Block 1.
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UNIT 6 HIGHER ORDER DERIVATIVES

Structure

6.1 Introduction
Ohjectises

6.2 Second and Third Order Derivalives

6.3 nth Order Derivatives
" 6.4 Leibniz Theorem .
- 6.5 Taylor's Scries and Maclaurin's Serics
-6.6 Summary , )
6,7 Solutions and Answers

6.1 INTRODUCTION

[ the first block you have differentiated a number of luncticns. You know that the

derivative { of a differentiable function [ is again a function and is called the derived. ®
funclion of [. : :

We have already seen in Unit 3 that the concepl of dilferentiation was motivaled by some
physical congepts {like the velocity of 2 moving particle) and also by geomelricai notions
(like the stope of a 1angent 1o a curve). The second and highcr'ordcr_ derivatives are also
similarly motivated by some physical considerations (like the acceleration) and some
geomelrical ideas {like the curvature of a curve), which we shall study in the remaining
unils of this block.

We shall introdtuce higher order derivatives in Sec.| and 2. Leibniz Theorem which is
given in Sec.4 gives usa formula for finding the higher derivelives of a product of two
functions. In (he later scctions, we shall study some usclul farnnlas, calleg series

" expansions. The sipnificance of these expansions will become clearer in Unit 14,

Objectives

Alter reading (his unit.you should be able to:

¢ calcwlate higher order derivatives of a gjven function

® use the Leibniz farmuli to lind the nth derivatives of producty of fnctions
® cxpand a function using Taylor's Maclairin's serics,

6.2 SECOND AND THIRD ORDER DERIVATIVES

Consider the function f(x) = x*. You know (hat fF(x) = d4x". Now, this {* is ngain g
polynomizl function and hence, can be differentinled (sec Example 5, Unit 3). We shaD

denole the derivative of I by (. Thus,

£(x) = 12x% This £7(x} is called the second derivative of the function I at the point x. It

)

. dy R .
is also denoted by -l—- (read us d square y by d x square) or y2 or I or D%,
. ’ . ¢ . .
Let us differeatiate £, Weget F”(x) = 24x, where I denotes the derivative of | , or the

1
third derivative of . Otier notations for £7°(x) arc —_—}; or yyor (" or D'y, Differentiating
. ux
- Lo 4 (14)'
[, we pet the fourth derivalive of F, [ "{x} = Tjﬁ‘ = yy = 24,
) x

Thus, repealedly differentiating (il possible) a given function f, we get the second, third.

faurth,..... derivatives of I. These are called the higher order derivatives of £
d°

Ifn is any positive integer, then the '™ derivative of { is denoled L, U™ or by
6 nybyaxn)orbyy.or DY,

x|'I

{rcad as

)




- Drawiag Curves

Such ciuations involving
derivatives ate hnowin s dhiferent o
ceuatians.

Recall {Unit 1) that
x| =" Azl
Moo wx<o

Note (hat in the nolation ' the bracket is necessary to distinguish it from " thatis, [
riised to the power w. This process of differentialing again and 1g1m. in succession, s

“called successive difTerendittlon.

We bave alrerdy secn that there are funcuions T that are nat differentiable. In other words
[" necd not always exist, Similarly even when [7 exisls it s possible thai [~ docs not exist
(sce Exumple 3 neas the end of this seclion). In general, for euch positive inleger o there

are functions [ such that 1™ exists, tat [ does not exist. However, many fupctions thal

we consider i these sections possess all higher derivatives.

A twice differcutiable function is a function £ such that [ exists. Let n be a positive

integer. A Tunction [ such that £'™ exists is called an u-limes differentiable function, 1f [
exists for every positive integer n, thien T is sail (o be no infinitely differentiable function.

Now we give some simple examples of higher depivatives,

Example T 1M we are given that the third derivative of the function  *

[{x) = ax’ + bx F ¢ has the value 6 at the point x = 1, can we [lind the value-of a?
Here, f(x) = ax’ + bx + ¢ , -
Differentiating Lthis we pel

"¢x) = 3ax? -+ 1

Dilferentliating this again, we get
(x) = Gux

lefvrcnun"—" cnce again, we pel
#M %)= 0a

Taking the value at x = 1,
(1) =6a

Itis given that 1 (1) = 6

Thus 6a = &. Therefore a == 1.

Example 2 If y = 2 sin x - 3 cos x 5, let us prove that y; - y—- 5
Now,y =2sinx-t3cosxd5
.—2c.osx—3:.1nh y3=—isinx—3cnsx
yry=—12sinx = 3cosx 4 2sinx -+ Jcosxk 555

The example below gives a function [ for which £ exists but I does nol exist,

Example 3 Consider the function [{(x) = x }x} far nll x in R.
The function f(x) can be rewritlen as

ilx =0
i(xy = s
—x"ifx <0
At poinis other than 0 we have
Mx) = 2xifx>0
Mx)y=—2xilx<<0
At x = 0, the right derivative of [
h! .l
RE(0) = lim —— = im  h=40, and
=0 h h—0 -
the Lelt derivalive afl T,
. Wo—
L) = lim ——— - tm__ h=0.
h—0 h h~0 .
Therefore 17¢0) = 0, ’ -

Thus, [{x) =2 ]x! lor all % in TL

We have already seen in Example 7, Unit 3 that the absolute vatue fanction (x| fails to be

differentiable at 0, Therefore, 17 s not differentiable at x = 0. That is, [''(0) does not exist.

PO T T




Try some exercises belore going any furdher.
E E 1) Find the second derivatives of the loltowing funclions.
) [(x)=x"'—4
b,y ="

E2) Find [ ( 7/4) for the following funclions.
1) f(x)=sccx
b) f(x)=sin2x 4 cos2x

E 3} Prove that tae Tollowing funclions satisfy the differential cquations shown against

then.
a) y=sinx ; Vi =
(b)) y=cosx (2 + (ys) =1

Itigher Order Derivitivas
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Drawing Ciryes

E

E 4) Find the value of integer k in cach of the lallowing
A Kx)=sinkxand M {x/6)=2 3
) [x) = =yt kx? A Land (1) =12

6.3 nth ORDER DERIVATIVES

Lel n be a natural number. We have already defined the n"™ derivative of a funclion in

Sec.2.

When a [unction [ is given by a formula, it is olten necessary to express it n'™ derivative
also by a formula using [ and v, Usually, one can guess £ afier working out 1 and
[, However, a rigorous proof would require an application of the principle of
rnnthernnucal induclion. '

-

In the examples below we shall derive formulas for lhu. n' derivalive of various functions.

Study thenr curefully as we shall be using them in later sections.
But. fest let us recall the principte of mathematical induction.

Ir {P,} is a sequence of prapositions (statements) satisfying
) P is teue {usually N = 1),
ii) The truth of P, implies the truth of Pay, i= N._

then P, istruc foralln 2 N,
We shall apply this principle in the examples thal follow.

Example 4 We shall prove here that the n™ derivalive of the polynomial function x™ is
mn.,.m -a
dx" fmm = D) (mo =S )X NI = mand
dy"  lojifa>m
Let us denote by P, the statement
n_m - '
dx _[m(m“-n ..... (m-nJ:-I)x'“ "fnZEm
(|y" 0, ifn > m,
Note that the produci m {m — iy ... {m & & 1) hee n fagters, When n = | anly nne
I"tctnr namely, m is laken.

G

Thus Py (--d-:- = mx”"} is true,

Supposc wc have proved for some n thit Pa is true, This meaas thai the o' derivative of
[EIH
X708 -

{m (m — 1y om(m = D S m, and s

“loiftn > m.

tEn




~ Then the n -+ 1" derivative of x™ is
= the derivative of the n'™ derivitive of x™

m{m—..m—a+DBm—mx"""ifn<m
=i0iln=m
Oifn > m.
m{m =) (m=n+1)(m— )"
= ifn-1<m
O0ifln4+1>m

This meons that the trulh of P, implies the truth of Pas1. Therefore, by the principle of
mathematical induction, Py is true for all = |, lence our resul I3 eeue for all naral
numbers n.

Remark 1 When o = m, the n™ derivative of x™ is .
=Emm—Do.m~a+1)x""=m(m— D)oo 32,1 This 55 Lha sesie as ml.

Example 5 If [(x) = In (1 -+ x), let us find F™ (x).

Differentiating [(x) = In (1'+ x), we get £'(x) = ——

Diﬂércnlinling again, ¥ (x) = — — 1
o (1 +x)?
Differentiating onrce again, " (x) = ———
g. g x) {1 4 x)’

. Can you guess ™ (x) now? It you have guessed correctly, you must have arrived at-these
. conclusions. o

i) The denominator of £ (x) is (1 + x)".

i} s sign is positive or negative necording as n is pcid or 'cvcn. i .

ili) Tts numerator has (n — 1! Do not think that it is mercly (n = 1). There is n
factorial symbol too. To be convineed of this, enlewlate £ (x) and sece.

D" XM=1
(+°
This guess remains to be proved. A proof is tecessary because there could exist many -

-other formulas for [*'(x) that caingide with the correct answer when n = 1, 2 or 3. For .
example, i we emit the faciorin] symbol, we, get onesuch formula. Dut we have alrcady

mentioned that this formuta does not hold for £*(x). So, lef's iry 10 prove (1).

Tiierefore our guess is f*{(x) = -

We first note that it is true forn = 1, 2 and 3 &s we have scen in the beginning,

Assume (hat it is true forn = m, that is,

(= D™ (m -1
) S I 2
Differcntinting this we get,

fimexy =

Y

160 = (= 1y e — 0 DT X = 1 |
( -

4+ xm! (1 +x)™"
el DG ol A S R IY
(1 4 xy! -+ )™

This proves the gucss for 0 = m + 1. Thus, assuming the truth of the formule (1) for ,
1= m, we arrive gt the truth of this (ormula forn = m + 1. Thercforc by the principle of
nathemnatical induction, our guessed answer is correet for all positive integers n. i

Fhus, when [(x) = In (I + xJ.-

(=1~ 1)t

)y —
e Y

- Hipgher Order Derivatives

When 0 = m, the 4™ defivalive i
coantani, because ™ = ¢ = |
tiverefora Ihe {n 4 1)™ derivative is
o0,

Chezk that the conditions “n =m
arn>mtand "n 1 2 om” are
egnivalent.
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Drawing Curves

Reeal? that
cas (O + w/2) = — sm
cos{d+ m)=—cosh .

cos {0+ In/2)=3sin d

10 .

E

- -f'"'(x) =

\

LSy Ify=(l + x¥, whcre ris o real mlmbcr find yn where n is a natueal number
(n <1k

Example 6 If [{x) = cos 2x, let us use the principle of mathematical induction to-find a
formula for £ (0).

We first find ™ (x) when'n = 1, 2, 3, 4.

We hove f(x) = cos 2x.

Diffcrentiating this successively, we get
f'%x) = — 2sin 2x

Mix)= —4dcos2x

fM(x)=- 8sin2x

f"%x) = 16cos 2x

We sce that in the formula for £"%x), vee have Lo have
i) o sign (positive or negative),
i) a cocflicient (some power of 2), and

i) a'lrigonomclric lunction (sin 2x or'cos 2x)

We obscrve that the first two terms carry ncgalive sign, the next two carry positive sign,

* the next two nepative and so on.

We also observe that sin and cos occur alternately. Therelore our guess is

[~ 2"sin2x ifnis ol’lhc form dk - 1
— 2"¢os 2% il nis of the [orm 4k + 2

2"sin 2x il nis of the form 4k -+ 3
2°cos 2x i nis of the form 4k

We can alse write this in 2 cbmp'tcl form as
f(x) = 2" cos (2x - nw/2) .. (3)
You can eastly check that (2) and (3) are cquivalent by pullmg n=4dk+ 1, 4k + 2,

4k + 3 and 4k in (3). We shall.now provc formula (3). ;

()
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We have alrcady seen Lhat it is truc for o = 1, 2, 3 and 4, Suppose il is Lrue forn=m,
that is, -

F'"™(x) = 2" cos (2x 4+ mw7/2).

Diflerentialing this we pet,

[ Bex) = — 27" sin (2x + ma/2)

or, {1 (x) = 2™ cos [2x + (m + 1) #/2]

So here again we sce that Lhe truth of (he formula (3) lor o = ot implics its tewrh for
n=m-+14i ° :

Therelore by Lhe principle of mathemaltical induction, we see that the guesseds Formula for

f"."(x) is trug for all natural uumbers n.

Now substitute x = 0, We obtain
rt"(0) = 2" cos nw/2
This is the required answer.

We can also usc this method to prove n general resull about the n'® derivative of o sum of
two functions.

Exnmple 7 If [ and g are two [unctions from R ta R and if both ¢
differentiable, we can prove that

(f + g)tnj =f" 4+ gtn]l
We shall prove this result by inguction.
Whenn = 1, this means (f+g) =" + ¢’

. This has already been proved in Unil 3.

Suppose (F + g)'™ = 1" + g™ {5 true. \
Dificrentiating this we gel

T+ g) ™) = [+ g™ = (™) + gy

This is the same as ’

{f+ g)'lm*ll = el gtm-n

Thus the result is true for = m + 1, Thercfore by the principle of inathennuical
induction -

(f+ g)'™ = " 4 g™ holds for ol nar+al numbers n.

Remork 3 Similarly one can prove that

()™ = c. F'™ hotds for all naturd numbers 1 and wif sealars ¢ TS fag. o red with
Example 7 can be restated in the “linear algebra weeminology™ as

The collection of n-times differentiate functions is 1 vector space under uswal operatic -

-Try to solve these exercises now.

E-G) Find the nj" derivative of the following lunctions :
C W) R=(ax + b
") Kx) = (ax + by .
¢) {(x) =Ic‘
dy [(x) =c*

Highee Order Derivatives

con (2% - &m o Y /2]
2o (2 mES? e /N
w2 o=gin (2% R mind2)

-
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Drawing Curves

E7) Il f(x) = sin x, prove that f™(x) = sin [x 4 nw/2] holds for every natural number
n.

Fe

E EB) Ify=sin(ax + b}, prove that for every positive integer n, we have
¥ = & sin [{(nw/2) + ax + b]




E E9) Prove that the n" derivative of the polynemial function
[(x) = 0o + aix -+ wx’ + ... + 2.x" is the constant [unction n! g,

E EIOIfy=cosxandifnis a]rny positive integer, p'mvc that
[9a]" + [yari]* = L.

[

6.4 LEIBNIZ THEOREM

In Ynit 3 we have proved some rules regarding (he derivatives of the sum, scatar multiple,
product and quoticnt-of two differentiable functions, These were

(f+g) =1 +¢g ’

(cf) = ¢f
(lg) = fg" + g’
, gt~ .
(i7g) = & 7 g (g(x) # 0 anywhere in the domain)
E

In the last section we have seen (Exaipple 7 and Remnnrk 3) that the first two rules can be

-extended to the n'" derivatives il [ and g urc n-times differentisble functions. In this section
we are going tb extend the produoci rie +f differentiation. We shall give 8 formula for the

n™ derivative of the product of two functions.

The product rule for two functions v and v can alse-be writlen as
), = uv + v
Now we look [or & similar formula Tor (uvhy, (uv)y, cle.

But fiest let us recall the meaning ol the notation C(n.r), where nund r & 7' and ; < n, This
C(n,r) stands for the number of ways or choosing 1 objects from n thyecis. Sometimes it is
aiso denoled by *C, or (7).

i:lighcr Order Derivalives

u, denoles the n onder
derivative of ',

13




Deawiing Curves

Leibniz had stated this fesultin his
[irst adicle’on difTercnsial caleulus
which was publishied in 1684,

14

Aisoecull the formuls
n!

D Chpy=—

) (m0) fl{n -0l

ity Clu.0) = Cna) = |

i) Chee)y = Cinn — 0 ;

V) oy » Clnr - N=Cim+),r+ 1) . S

Titese are cambinatorinl identitivs, true for nll posilive integers rand n with r = n.

Thearem { (Leibniz Theorem) Let n be a positive integer. [f v and v are n times
dilfercniiable functions, then

{(uv)s = C{0,0) uav + €0, 1) tta-1¥y + C(0,2) My + C(n,n-) uv,

The pattern in the formula for (uv), can be compared with the cxpansioa of (x + ¥)". The
coeMficients are binomial coellicients and they appear in the same order.as those in the
expansion of (x 4- ¥)" The order of (he derivative of u goes on de¢reasing one at a time,
and ihe order of 1he derivative of v goes on increasing one at a time."The number of terms

isn+1.

Remark 4 We omit the prool of this (heorem and merely indicate how this can be proved
by induction on 1, Firslly, when n = |, the above formula is the same as the already
known product formula, and therefore is true, Assuming that il is true for n = m, we can
prove il for @ = m + |, by applying the product rule for each term of the expansion of
(uv}m and by using the combinatorial idertitics mentioned. (Sce & 17) for more details

Weé siarl with.a simplo dndl direet application of the formula,
Example B Il f(x} = x sin x, fct us find the fourth derivative of f, using Leioniz Theorem.

We first observe that for o == 4, (he Leibaiz Theorem stales
(wv) = C(4,0) wev + C(4,1) myv) -+ C{4,2) wavy -+ C{d.3) uivs + C(4,4) uvs
= 4oy .6 upv: 4 uivs - uv,

En this problem we take ¢ = x and v = sin %, 50 that [ = uy

Wehavcu = x v = 3in X
u = | V) T COS X
w=0=u;=u v; = —sinx
' V)= —COS K
va = 5i0 X . . :

Substituting Mhese in the above formula, we get

M= )a=0+0+0+d4(—-cosx)+ I.xsinx
= xs§inx —4cosx

Whal happens if we attack the same probtem dircctly withoul the use of Leibniz
Theorem? We have . R

[(x}=xsinx
Dilfercntinling this, we gel
['(x) = x cos x + sin x {by product rule)
Dilfcrentiating ance npain, we get
I(xy = x (= sin &) -+ L cos x -+ cos x
=2cosx — x3inx o
Differenlialing once again, we pet
M"x)=— 2sinx — (xcosx +_5in x)
= - 35in x = x cos'x ’
" Dilferentinting once.again,
f%x) = — 3 eos x = [x (~ sin x} + cos x]
= xsipx — 4 cos ¥




- We notice that we oblain the same angwer. [n this dlru.,l nthod, we itd (O apply the
preduct formula four times, once for cach differentiston, .

-tis clear that when we wanl the ™ derivative for higuer af 5, Leilziz theoree

" provides an casier methad 1o write dovm ¢ e amiwer, aves g the deflioahe o omatofty

applymb the product formula.
Example © If y = (sin”'x)%, prove thal
(1 —=%%) ymz = (20 + 1) xyer — 0y, = 0 for each [ -5 - ;

Differentiating both sides of y = (sin™'x)*, we &t

2sin”'x

"=y

Squaring and crossmultiplying we get

(L= XYyt =4 Gsin™'x) = dy

Differentiating ence again, we get
U -y — 2yt ~dy =0
Dividing throughout by 2 y, gives us
(1 -xz))’z—x)'|—'2"‘0 ’
Differentiating n limes, using Leibniz Theorem flor cach of the first two terms we get
{1 = x%) yniz — C(n, 1} 2xy C{n 2} 2 ¥ ~ [xy,..; + Cln,)y.}J =10
That is, )
(—x» )y,.q (Zn + 1) Xynu ~ 0¥y, =0

The following exercises will give you some practice in applying Leibniz Theorem,

E 11)State Leibniz Theorem when o = 5. Thatis,

{uv)s =7

E lZ]Provc that whenn = [, Lmbnur Theorem reduces to the product rule of
differentintion,

E 13)Find the third derivative of sin‘x using Lc:bm? Thcorcm Find the same directly atso
. and verily that you obtain the same answer,

Higher Order Derivatives
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E E 14l itx) = x ¢, find the sixth derivative of , using Leibniz formula.

E E 15)Find the n derivative x’Inx

E E16)Ify=c¢"x prove that
v =" [a™¢ F 202" x ++ a(n — 1) o™

— e




F -

E E17a) Write down Leibniz formula for (u.v})n Higher Ordee Derivatives'

b} Differentiate it term by term and obtnin
(@¥)mer = C(u1,0) wmarv 4 Gl 1) (v -+ U2y I Ctmum) uvia-.

c) Deduce that
~ @en = CM0) iy + [C(MD) A ClmL1Y] tmve + [Clm, 1) -
C(m,2)) wp-rvz + .. + [Clmum = 1) + C(mum)) Uyve + Clon, 1) W¥ey.

.d) Deduce from (c) the Leibaiz formula for (0v)a.).

E ! E 18) Using Leibniz Theorem and induction, prove that
" = n! for all nelural numbers n.

. 6.5 TAYLOR’S SERIES AND MACLAURIN’S SERIES

[n this section we obtain series ckpunsions for many important functions, For this, we usc
higher derivatives. -
Yﬂ

ol
I

hiave comie acruss ihe ioifowing scries ;

i) Exponential Scries ;

4 } "
s T . I x
e T TR O S

it) Logarithmic Serics :

¥ x : X
MA+x)=x=F +3 +.. +(- D™ k] <

-
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Urook Taylor {F685-17231) and
Coalin Maclaurin {1698-1746) were
both disciples of Newtan, Taylor
first published Nis scries in a paper
in 1715, Maclaurin used Taylur's
sceics a$ 1 fundamenial ool in his
work on ealculus.

18

"= (sin x) = sin (x + —— )

i) Ceoometric Sering :
-i—l-—- I O i x4 provided [x] < 1
- .
iv) tinomiad Scries ;

(18 5 0t ey e provided $x| <7

We observe that each of them is of the form

f(x) = a0 4 oy x b ax’ et b A A WHEES Bu, @1 82, e, Ay ATE
SOIMIC Constants, .
We ask ourselves the questions ; Is there anything clse comumon to these [our cxamples? Is
it possible to express aw &1, ., ita, ... in terms of the funclion £ Qur answer is - Yes. In:;nli
Lthese examples,

)
(©® .
it

_ r!.“l(o}
2!

ar —

L Mo
nl

In other words, the series is of the form

o

[ () , r'*\o
- Mo = qoy+ — . DOy O
k! 2! n!

We shall prove this for the above four instances, in the cxamples worked out below. This
expansion is called Taylor’s serles for [ around zere. Tt is also known as Maclaurin's
series for £ The name “Taylor's Series for { around zero' suggests that there may be a
Taylor’s series [or { around xq{xa 7 0). But in this course we shall restrict onrseives only 1o
the scrics arpund zera, This series expansion makes sense only when [ is inftnitely
differentiable at zero. Ttis valid for many important functions (though not for ali functions).
You will learn more abeut the validity of these series in the coursse on real analysis. In this
seclion, you should train yourselves to wrile down Maclaurin's scrigs for many functions.

We have said above that the function f should be inl’initcly_ dilfcrentiable, that is, it should
have derivatives of all orders. How do we check this condition? For some fanctions it is not
difficult. For example, we hiave ’

d” nx d"

dx” 2 d_x"
dll . .
__l- {c]l) — :_l“cl \.

dx”

. nmr
{cos x) = ¢ox(x - -;- »or

" (cosh) [ A S ]
coshy) = ——- [£oZ =
dx® " AL " = g

fet o (- l)"t'j‘]

civs hx if nois even

b hs,sin s add

cay tcthe deriva e Parders vret for b values of »and we

aviog® wenes




Example 10-Let us verify that the known series expansion of ¢* is the same as its
‘Maclaurin's serics. - .

Maclaurin’s series for ¢* is

L 21 ' f™eg
mow@ x + L U S O X"+

2! n!
‘Where [(x) = ¢* '
Now. f(0) = ¢" = |
Also, f'(x) = e 5 I'(0) = 1.

. Tn foct, we know that 1™(x) = ¢* for all naturat numbers n, which means 1™(0) = ¢% = §

for'all optural numbers n’ Substituting these vatues of [(0), (0}, ..... (0} in Mactaurin's
- Series we met

[ ) .lz. ...x_J -.;....x_“' .....
sEb gyttt a T

which is the known expansion for ¢”. ) .
Example 11 Obtain Taylor's series for In (I +x) around zero. Let f(x)=1n (I + x)
~Then wve have already seen.in Example 5, that

) = 1 G

(+x
Therefore, £(@) = (< 1)"* (n ~ 1)!
()] I Gl )
R n

Therefore Taylor's series around zero is

. o -1y — ! — [yt -

dna oy + S0 4 e ey
NS =n o,

=xEg g -k S ey

We note that this is the seme as the already known.logarithmic serics.

_Eninplc 12 Now let us wrile ;:Iown Muclnﬁn‘n‘?; series (or Taylor's serics nround zero) for
17¢1 = x). .
' ' !

Then f{0) = T-p =!

Léthf('x) =T—x"
fx) = (—,—1—? FOy=1"

—x
filx'=

2
T =2

We cn i:rovc by induction that
(g = —— and therefore f"(0) = nl
T )
'ﬂ:ereforc_Mac!aurin's series is
N ) .
Tox SThxtx ot xm g e

Note that this agrees with what we already know, namely that the sum of the pecometric
srhss bz xS L s i~ x}.

Efumple 13 Suppose we went 1o wnite down Taylor's series for (1 -+ x}" around £0r0,
where r is a fixed reaf number,

Let f(x) ='(1,# x)'. Then f(0) = 1

M) = e (L + %)™ 5 £y = 1. _
M) =rr~ D +07 00 =1 ¢ =1

v o
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We can prove by induction that

M) =r@r— D =04 D1 +x7"

Mw=rr— .- —n+1)

Therefore Taylor's series around 7ero is

-1 . — Do r—=n-1
I+_l—r!'x~1'-Lr2!'—)' x4 T Tl ) n(lr n | )x“—I-'"'

Note : This is the same s the binomial serics 1hat we already know. This expansion is
valid only when |x| < 1. The reason for this will be clear when you study the course

“Real Analysis”. When r = — [, this binomial scrics becomes )
] — 1 = (=2 DY,
a+x'=1+ X 20 X+ " xj-...
= ~x+x— .. + (="t

Note that Example 12 follows from this on rcplﬁcing xby —x lh;oughout.

So far we have scen that the [our known series occur ds Taylor’s serics. In the next two
examples, we find that we can write down similar sesizs even for functions like sin x and
cos X. :

Example 14 Let us wrile down Maclaurin's series for the function sin x.

Let f(x) = sin x. Then we hove atready seen in E 7)

0 il'ﬁ is even
that 1(0) = 1if n is divisible by 4.
— 1 otherwise
g T
o} — SIN 2
We see thal, as nvaricsover 0, 1,2, 3,4,5,6,7 ...,
[(0Y takes the values 0, [, 0, — 1,0. 1,0/ = 1, ...

[[n]

Therefore Macluurin®s series for sin x is

: | 0 =1 0 .
im0 gy kg xS 6 g X
b1 i 7
X X X X

at 5t n

_Example 15 To find Toylor's serics for cos 2x around zero, let us write f(x) = cos 2x..We

have alreudy seen in Example 6 that

nT |

f(0) = 2°cos 5

Therefore, Taylor's scries around zero is
ox 2% ox’ 2% ox

cos2x = 13~ 3 i, s T
2% 2'x 2%¢ '
=l—r e 7

Example 16 Suppose we want to
n)  writs down the fira {our terme of Maclnurin's series for tan .

b) writc down-Lh {irsi three non zero terms of this series.

Let f(x)} = wn x. Then {(0) = 0

() =sec’ x, [(0) =1

["(x) = 2 sec® x tan x, £ '(0) =0

{9 (x) = 2sec' x -+ 4 see! x tn’ x
= 2 sec’ x (sec’ x 4 2w’ x)

Poy=201+0=2




1

Therefore the first four terms of Maclaurin's series for tan « are given by Tigher Order Derivurives

1 0 ,-2
ENTRAC TR TS

Hence Maclaurin’s series for tan < is

Now, we wanl the next noa-zero term.

‘We have f“’{x) = I6sec’ x tun x & B sec x tan’ xand-
(o) = -

Nexi f‘”(x) = Iéwc x + 64 sec x tan? x 4- 24 sec’ x tan® x + 16 sec’ x tnn* x
This means [*¥0) =

Thus we have
) y -
X 2} ' -.
tanx=x + + T + '
Exampie 17 Ifin Maclaurm 5 series ror sin kx, the encfficient of x” is given.to he — 6 &,
let us find alk possible values of k. ‘

Maclaurin series for sin kx is given by

k k] 3
sin kx—-l—"; kTR *+ oy since §(x) = kcos kx
fx) = ~ k” sin kx -
fm(x) = — k’ cos.kx. where (x) = sin ko,

The cocflicient of x* is — (k*/6)

- Therefore ~ (k'/6) = — 6%
This gives the equation k (k? — 36) = 0
The roots arek = 0, 6 or — 6.

Thus, 0, 6 and — 6 arc all the poss:b]c valucs of k such that the ceeliicient of »” in
Maclaurin's-series for sin kx is — Gk

E 19) Writc down Maclaurin’s serics for the followiqg:
1
R
b x—2*+1
6) ' Cos X
Cd) 141 = 2x)

T A AT TG I
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L

'E E 20)Wrilc down the first three non-zero terms in Maclaurin’s series of the following.
8). sin3x

b) In{l —x)

1

E E-2I}Find the coefficient of x* in Maclaurin’s scries for the functions.

B} cos2x

| b) sin(x-i-—:)

22




-E E 22)If Maclaurins scries for sin xis dilTerentinted term by lerm. do you pet Macluusin's
series for cos x?

E E 23)If Maclaurin's serics {or ¢ is differentinced term by term, we gel the same series
again. Prove this.

-

= - E 28)Consider the function y =-a + tan™ bx wherc o and b are fixed real numbers. We
are given that its Taylor's series around zeto is2 + 3x — 9 x* + .,

Find the values of a and b,-

Iigher Order Dervatives

.23
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L+ 0,since
k=0 =>p=2/1
which is impossible,

I E25Find he coefficient of X in Taylor's serics around zero for the function sin

b ST T

Some Genornl Remurks on Toylor's and Mslcln!lﬂn‘s Serles.

Though wir have obitiesd infinite series Tur ineny funciions, it is necessary to give . notz

of caution. Thas: infnite sories need nol be vahd for all valucs of x, and us such, thess
Rave b be ssad @bl e in ihe courae o real alysis, you wnllh, able tn study ihe
CORUINUN: e & il theds serics .zr(, vidid,

————br— = o s e — e et g 3 — T

6.6 5i .»;?.wx_ i(

In this unit, we have

1) introduced higher order derivalives,

2} derived a formula {Leibniz's Theorem) for the n' dcrwalwc of a product of two
functions,
(Uvi=C{n 0 u, v+ Cn, 1) up-r vi + C(n 2unzvz + o+ C(n nj)u v

3) writien Taylor’s series around zero/Maclaurin’s serics of a numbcr of funcuons by
using the formula -

r’(0) 1’ ©)

X+ =g % b 00

“al

fx) = £(0) + X+

6.7 SOLUTIONS AND ANSWERS

E1) a) 6x h) 4c™
E2) a) 112  b) 8§
E3)a) y=sinx => ys=sinx=y
: b) y=cosx =y = —sinx, 5= cos'x..y_-=sin\
_.—"-’(yz)z+(y;)z=cos:x+ si!|2k=l.

‘E4) a) - f{x) =sin kx == ['"'(x) = — k'’ sin kx
== (U yr6) = — k' sin ks
Now, — k? sinkwr/6 =2/ 3 = sink w/6 = — 23/ 3 /K’
Sincg —~ | <sink m/6 <0, — ¢ <kl <0
= !r. '-Ior*?
Cut of these, k = + 2 is the value wh:ch s.ausl'cs sink m/6 = — 23 K
by Ixy= '+ k' +#1 == ['(x; = kx*™" + 2kx

Py =Kk — 1) 42k =12 == k=3or—~4
ES) yo=1(r — 1) (r —u + 1) (1 4 x)°°




Ia" ' ' Wigher {¥rder Derivatlves

o 3!
E6) a) [{3 oY (ax+b)"'n<",

J0.ifn > 3.
l L]
b) e n)!(ux + 0" < m
{]. ifn>m
c) ¢ d) k"t
ET7) fix) = sm x = [ (x) = cos x, {” (x) = ~ sin %, cOs X II'r n= :k!\'ﬁ ")
[7(x) = — cos x, fYx) = sin x and s0 on. 50 Our guess is by ™(x)= :;'0“9‘; li!' "‘1 S Ak :3"
Now use the prnrciple of mathematical induction 10 pmvc lhm i x) = 'ﬂn sin x if n = 4k -
{(x+ 11 y as in Exanple 6.
2
El0)y=rcosx ==y = —sinx, y; = ~ cosx, ¥s 7= 8in X, Y. = cos X and so on.
¥n = ¢0S (x + nx/2) '
= Yasr = — sm (x + nw/2)
=Dy, oyt = cos (x + nmr/2) + sin’(x -+ mr/2] =1.
E ll)(u s =uyv + Su4 vi+ lOu; ¥a *F 10uz vy 3 Suy ve 4 vs
E 12)(u v = us v + u v, which is the produci refe of differentintion.
A’y d - .
E 13)—-?— =T (sin x. sin x) = ~ cos x sin x — 3 sin X COs™%
— 3sin X cosx — cos xsin x = — 8 sin x cos x '
d = |
H(sin‘x) = 2sinxcosx
4
= . e (sin® X} = 2(003 x — sin’ x)
1
= (sin? x)——Bsmxcosx N
dx’
E l4)e'(x +6)
(__ )l‘l 3
E 1s)————- o ~ DI —3Cm, 1) (x — 2)! + 6Cn, 2}(11 =3 -
- GC(n 3in~— 4)‘]
E19)a) [ — 2x+3x" — 4x’ +
b) 5 dx+x*+0x" 4 0x“ +
) Poogp g
6 1+2x+ 227 +20 %0+
Pt 38y
B, Iy Ay
- ¥ X
).-x—3 —%
E2)8). 0 by —
8 C—
’ N2
E22)Yes
.E 24)We take that tan™' bx always lakes valucs hc:lwcc.r: ~ n/2and #/2. Then, & = 2,
" b=3 .
E25)176

25
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UNIT 7 THE UPS AND DOWNS

Struciure ' ) ) S o,

7.1 Introduclion
Objectives
7.2 Maxima-Minima ~F Tunctions L.
Definitions and Exaniples
A Necessary Condilion (ar the Existence of Tixireme Points
7.3 Mean Value Theorems
Rolle's Theorem
Lagranpe's Mean Value Thearem
7.4 Sulficicat Conditions for the Gxistence of Exlromc Poinls
Fiest- Derivalive Tesl
Second Derivative Tcsl : )
7.5 More [nformation from the Second Derivative
Concavity/Cenvexily
Points of Inflection
7.6 _ Summary
7.7 Solutions and Answers

71 INTRODUéTlON - . -

Why do drops of oil o thc surfacc ol' waler coalesce? Why do honeycombs have
hexagonal cells? Why is  drop of water spherical? Wiiy does red corpuscle in blaod
have the shape of a biconcave disc? The ansiwers to these questions are closely related-to
minimum,and maximum values of some functions. Drops of oils tend o coalesce so as to
minimise totn! surface tonsion, The scheme of hexagonat celis enablés bees-to store a fixed

' _amount of honey by uslng the minimum amount of wax for. sealing. A drop of wateris

“spherical because-a sphere is the shape which encloses a given volume with minimum
surface arca. The oxygen carrier red corpusele, on the other hiind, is i the shape of a_
biconcave disc 50 as (0 maximise the surface krea. It enables our system to carry the
maximum amount, of oxygen on the surface of a fixed amount of blood,

In this unit we shall discuss an :mporlanl technique involved in solving the problem of

maximising or minimising various [unctions. This technique, as you will soon see, involves

(he usc of derivatives which you studied in Units 3-6. We shall also discuss Rolie’s
theorem nnd the mean value theorem which have very importapt apphmtmns as you WI“
see further in your study of calculus.

Objectives

After having gone through this unit, vou should be able to .

* obtain the maximum and minimum values of some functions

solve practical problems of maxima-minima

sizte Rolle’s theorem and the mean velue theorem .

find the points of inflection and, the curvature of a curve,

determine whether a given function is COTCAYE OF CONVEX OF ncnlhcr n a given
dinterval.

72 MAXIMA-MINIMA OF FUNCTIONS . .

Look at the points P and Q in the graphs in Fig. 1. How are they dlﬂgcnt from other
poinis on the graphs? .

We could describe Q's as the peaks or hill-lops and the T''s as ti‘c vallcy -hottoms. Using
the language of mathematics, we could say that cach P Ras the propesty that the value of
the function { at P is sniiker than the vatue of f at ncighbottring points. Similatly, the
peaks Q arc dislinguished by [having & maximum value there when compared lo the

. values al near-by points.

But before proceeding any furlhcr il us dcl‘nc maximum and mintmum points of &,
lunction precisely. - i . i

=




Tig. 1

7.2.1. |Definitions and Examples

Defigition 1 : A point ¢ is said o be a maxitwum peint for a function [ il there exists 2
8 > 0, such that .

f(c) Z {(x) for all x such that|x — ¢| < &.

[is said to have a maximum at ¢, and f(c) Is called a2 maximum valie™of [,

We can similarly define a minimum value of f. Lo

[is said to have a.minimum at n point ¢ of its domain provided there exists n 6 = 0 such
that ) :

f(e) = f{x) whenever [x — c[ < &,

A maximum or a minimum valuc is khiown as an extreme value,

Example 1 The function {(x) = [x| + I hasa minimum.value at x = 0, You ¢nn see from
Fig. 2 that [(0) = | and, &x) > ! for all x in any every reighbourhood J0 — 8, 0 + §[ of
0. The minimum value of £ Is tius £(0) = 1. Do you agree that this function has no '
maximum value? - ..

-

Ig-2 :Graphof f(x) = Jx] + I

i tnis cxampic we see That 1(x) = {0} in every acighhouchood of 0. But _tb prove that [(Q)

& mitimum-value, we need to find only anc such neighboushood.

r next example shows that Deiinilion | cannpot be applied to functions defined on
osed intervals if their extremn occur at either ol the cad points of the interval. t

- )
xample 2 Consider the function f(x) = x + 2, Vx <0, 2].
onvils graph {Fig. 3), it is clear thnt x = 0 is & minimem pointand . = _ ia maximum
int of this funclion. [n fact, you will set (hat .
SO =Rx) = H(2)=4yx €D, 2)

L]

Jx -8, x 4+ 8. thatic, thz cel af
noints whose distance from x is less
than a pasitive nunther & is called a
neighbaurhnod of x.

27
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Note that here we canmat [iad n 8 > 0 such (hat ({0} = [(x)¥x €] &, 3 forthe simple

" reason that f{(x} is not defined for x < 0. The same argument holds good for the

Fip. 3

X

4

maximum. Singe f(x) is not defined for x > 2, we cannol find any & > 0, such that
)€ K)vxejz—a24 48, This means [ does not have extrema at 0 or 2 in the
sense of Definition 1. flow do we resalve this paradox? We madifly Definition | 1o suil
such cases, ’

1ot £ he defined on [a, b). We shalisay thal f has o maximum (minimam) at a if we can

fing ) = 0, such (hal f(a) = {x) (f(a) = [(x)) forall x €[a, a T 8[-

Similarly, we shali.say that f has n maximum (minimum} al b.ilweecanfind 6 2> O
such that [} = [(x) (f(b) = {(x)} for ali x €)b— &bl

Exnmple 3 The lunclion {(x} = si x has a maximum value at several points. Fig. 4 shows

the graph of this function. Cna you see that these poinls are w72, 5/2, e =3W2, <TRI2; T

fig. 4: Graph of f{x) =sln x

In general, the sine function has a maximum af cach of the points 2nm + (1/2), n being any
intcger. The maximum value is sin 207 + (w/2)] = |. This function has a tniniraum
vatue oo at several points, Whnl are these paints? Do you agree thal the minimum value
at these poinls is —1?7 We can now sny (hat this functinn has an extremumn nt all poinls
nm + /2, n heing any integer, '

The funciions in the examples considéred so far were ali contipuous. For such functions, a
valley in the graph of the funclion indicates & minimum ang a penk points to 4 maximum.
But we can talk about maximum and minimum values of non-conlinuous funciions tog.
Here, we nay find extreme values wilich are neither af a peak nor at g valley-boltom, as
in Example 4.
Example 4 Consider the function f defincd as lollows

— (P i =,
[£3) 7.

(x—3Nilx>1

Thi- ction hias three extreme points, P, Q and R (see Fig. 5). You should be abte 1o sce
for yoursdi thai P is a maximum and R 2 minimum noint Al [
The function #lso hus a minimum at Q, thatis, at x = 1. Lel vs sec why. Consider the
] l 13
neighbourhood |1l — = ¢+ 1+ = ,that is, { == ' =~ | of 1. The function in this iulerval
2 . 2 i 2 2
is defined as (ollows !
s
— 1 —x}, when =— <x=1

fix} = ( 2

lx — 3, when 1 < x < 3/2
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Thus{y=—| —1?P=—2._

1 -,
For7.<x<l.x2<l = —x'>—]

= —1=x>-2
=> f(x) > K1)

Now, when [ < a < 3/2, f{x) is positive, and therefore s greater thar {1}, Hence
f(x} = (1) whenever x €31/2,3/2[ .
Tihus ({1} = — 2 is 0 minimam value of the fuaction,

. ‘Remark 1 We found in fhe abave example.ihat [(0) = —~ [ was 2 maximum vatue of [
whereas (3) = 0 was a minimum value. Did you find it hard (0 swallow that 8 maximum
vaiue of the function is smaller than a minimum valuc? If yes, recall our definition of an
“extreme value. We were conceraed with the values of the function only in a
neighbourhoed (that is, points near-by) of the extreme point. Thus, the concept of
maxima-minime is essentinlly a local phenomenon. What happens globilly or clsewhcre
was not under consideration. For this reason, some people use the terms local (or relative)
maximum and local (or relative) minimum instead of maximum and minimunm.

A vatue (¢} such that i{c) = f(x) for all x in the domnin of tlie funclion, is then called an
-absolute (or global) maximum. Similarly, if {(b) < f(x) for all x in the domain, then i(b) is
called the absolute (or global) minimum. Therefore, a fenction mey have many [ocel
minima or maxima, but it can have only on¢ absolute minintem or maximum. [n the light
of this we sec that [(0) = | i_s the absolute minimum veloe for the function in Example [,

E 1) Find the maxima, minoiia of sach of ihe foliowipg functians. 17 a function has 10
maximum/minimum say so, :
i} {(x) =5 forallx R,
i) ifx)=x forallx € R,

i) fix) =x, for0 <k < 1.
[Be carefui! 0 and | are NOT in the dninain of the sunction!)

iv} f(x} = x" lorall x ER.

v) Thy= ' x foralix G4, 16] 1

TT=IC

]
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7.2.2 A Necessary Condition for (he Exisience of Extreme Points

So [ar, we have used the graph of a [unclion as an aid 1o discovering extreme points.

Clearly, this is not going to be feasible in all circumstnnces, Drawing graphs may be time-
consuming and cumbersome. Certainly there must exist quicker and, neater techniques. In
this subscction we describe an analytic method of finding ex(rema. But first, a definition :

Definition 2 A point c ol 2 set A C R is said.to be nn interior point of A if for some
§>0]c—8,c+ 6 CA. :

The point | € A= [[],-2] is an interior point, since ]} — &8, 1+ 6 [ C{0, 2],

i . o .
. il we choose § = — . Tt neither 0, nor 2 is an interior point of A.

2

The loltowing theorem gives us a necessary condition for the exisience of an extremum.

Theorem 1 Let { be a function wh:t.h is derivable nt an mlcrlor point ¢ of its domain D, If
f has an extremum at ¢, then () =

Proof : Since [ is derivable at ¢, {'(c) exists. This means that LT'(c) and R((c) exist, and
are cqual, Suppose, fiest, thal £ has n maximum al ¢, This means.

f[(x) = [{c), ¥Vx €Jc — &, ¢ + &, where § is some posilive number.
== 0(x)— () =0 VxEle— 6 ¢+
' Ry RS o g

Now if.c — § << x <C¢, then x — ¢ << 0 and X — ¢

Simitaiy, ifc < x < ¢ + 6, then x — ¢ > 0, and L Bt O
. x—C
There ¢
f(x) — I{c)
X —C

, f(x) = f
kY ey = Jim. [M <0 ' .
X—C .

LE 6 = lim [ ]?’.0, and

Xx—cC

X—C

e PN Frin 2T

= &




Bul we know that L{(c) = RI(c), Hence the above inequalkiies vield LI'(e) = R (e) = 0.

that is, £(c) = 0.

Procccdmg cxnrlly ms above, we can prave that (@) ~ 0 cven when Tlas a minimum at ¢

(scc E 2)).

Remark 2 The condition ({¢) = 0is onby a accessaiy condition far [ to have an
_extremum at ¢. This means that if [ has an extremuam at ¢, thea we must necet2angs
f'(c).= 0. But it is by no means a sufficient candition. tn ather words, if we are gives thal
f'(c) = 0, this information is not sufTicient for us Lo conctuds thal [ has «n exiremum at ¢.
That is, & function may not havg an extreme value at ¢ even though £(¢} 15 zera. For

hive
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[

example, take the function f(x) = x* shown in Fig. 6. We brow 1l ©50) 0. Now, 7o
(0 = 0, whereas f((x) < 0 for =& < x <@, anl [{x) % ior D ox <& L lanevar posslive nnnher § / .
may be, Thus (here is no & [or which either bix) < (O} Jor al! ~ ¢ ¢ -8, 6] or [{(3) 2 [0). [or ’ i

- all x) -8, &1 ! |
’ i

This indicates that [ has neititer 4 maximum, ror & minimum dx = 0, even thouglt (o, = 0. !‘ !

Remark 3 The conditlion l"(c) = 0 applics in the case when I’(c) exists, But a function

may have an extremum at'x = ¢ even though it is nol derivable at ¢, For inslance, the
function [ of Examplc 4 is nol derivitble at x = 1. Yer it has 1 minimum there. Similnrly,
{unetion {(x) = = |x| is not derivable nt x = 0 but has  maximum there. Cun you poinl
oul another _funcuon from the examples above, which is nat derivable but has an extremum?

From this discussion we arrive al the following corollary:

Corollary 1 If a function { has an exiremie value at r point x = ¢, then one of the
following conditions is satisfted :

i)y {isnot derivable at c. .

ii) ° Fis derivable at ¢, and ['(c) = 0.

Delinitlon 3 A poinl at which either £'(x) docs not exist or is zero is known as a critecal
point. ' .
Il you study Definition 3 and Cor. | carefully, you will relise that a'ny':c:qtrcme pointis 2

critical point. Bul the converse is not true. That is, a critical point nced not be an extreme
-point. You will find an example (o illustraie this in Remark 2 above,

Example 5 Consider the function {(x) = x™* for all x € R.

2
rx) = =7 %~ Thus, this function is not derivable at x = 0

This means that f has & critical point at x = 0,
Further, at other points { exists, but
fixy =2/ x P 0.

Hence, the function hﬂ.s only one critical point, namely 0, For every § 2> 0, and every x in
1~ 8, 8, [(x) = 7 = (') = 0 and {0) = 0. Thus x = 0 is a minimum point and
f(0) = 0 is the minimum value {also see Tig. 7).

vi
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Drawing Curves,

Since there is only one mariniwm
valueg, namely [{k), of [{x). .
I(k)y = (X} forall x 5.1. 0 < x < 2k,

32

txample 6 A farmer has.a cerlain leagth of fencing wire. He wants (o make a fence in o
rectanpular shape to keep his goals, Now whal dimensions should lie choose (0 ensure
maximum enclosed area?

LN

It is clear that in order to get 3 maximum enclosed aren, the farmer should use the whole
tengilt of wire. Suppase it is 4k metres. Then 4k is the perimeter of the enclosure. Thus if x
and y are the length and the breadih, respectively, of the enclosure (in metres), then
Ax+y)=4dkory =2k ~x, 0 < x <2k '

Thus, we cin regard thc enclosed area xy {inm%) asn l'unclmn F of its length x. Thus, we
Kave the funclion [ defined as

i(x) = x(2k — x), for pll x 2> O (lenpih is 1]wnys positive).Our 1ask is lo i"nd that value of
x, for which [(x) becomes maximum. Now [(x} is a polynomial in x, and therefore f is;
derivable for all x. Hence ils critical points (among which we should seck the extreme
values) arc obtained from the equation f'{x) = 0, which in (his case gives

2k — 2x = 0, thatisx = k.

This means that 1he functien f(x) = x(2k — x} has & critical point at x = k,
Let us sec whether it has an extremum at x = k.
Now, (k) == k?, ard
f(x)=2kx = X’ =% — (x — k)* : e (1)

It is obvious from (1) that for values of x less than or greater than k, (x — k)* > 0 and

therefore, f(x) << k¥ = (k). Hence, for any 6 > 0, f(x) < (k) for all x € Jk — &, k + &[.
This means {(k} is a iocal maximum. But since there is only one extreme point, [{(k) is the
maximum valuc of the area. Now, when x = k, ¥y = 2k — x = k. So, the farmer should
have n square fence made, 1aking the entire length of his wire.

In this example it was casy to comparc the acighbouring functiop values with [(k). Are
you wondering how you would tackle this problem when the {unclions under
consideration would not be so nice? There is no need for speculation, We have sufficient
conditionswhich telt us whether f{x) is an extreme value or not, ond if it s, whether it is a
minimum or a maximum value, without 'aclually having 1o compare values. Section 6 is, in
facl, devoted to such explorations. Before that, in the next section we shall dtscuss the
mean value theorems. Bul now it's time to do some exercises.

]

.E2) Prove that (¢} = 0 if { hos a minimum at c.




E EJ) Find the crilicnl' points ol ench of the folluwing funclions. ]  Hps und Do

a) f(x)=(x—{x—S5,VxCER,

b)Y Kx)=x'+ 134 S+ LVxER,
¢} [{x)=sinx-+3,4%xCR.

d) l'(“x) =g'4x ER.
&) f(0) = 2|x|, ¥ xER.

f f{x)=[x] + 2% xER.

g) () =ix| +|x—1[,¢¥xER.

hy i(x)=x 1/x,x>0

7.3 MEAN VALUE THEOREMS

In this section we shall siudy the mean value theorems. These thearens hiave proved Lo e
very handy-tools in proving other theorenis not only in calculus, but also in otler branches
* of mathematics, such as Numerica! Analysis. Their importance lies in their wide
applicability and irenieaduous usefuiness.

We shall first consider Rolle's Thearem, which is a sf)ccinl case of Lagrange's mean vrlue
theoremm. We shall not attempt the proofs of these theorems here, Lt you will agree il
both arc intuitively obvious. We shall discuss theis geometrical significance and illustrate
their usefulness through some exumples,

7.3.1 Rolle’s Theorem

Rolle’s Theorem was not acivally proved by Rolle. He had only stated i1 as w remyrk, In
faci. Michel Rolle (1652-1719) was known 1o e a critic of the newly founded theory of




Drawlng Curves ’ Newton and Leibniz. [Lis imnicnll. thea, that ane of the most imporlant thecrems of this
: theory is known after him. Now let us sec wlil Lhis thearem is.

». '

l'ig. 8

In Fig. B we sce tiie graphs of (wo continuovs funclions defined on the closed inlerv_al [a,b’

Here we.observe the following features common to both of them.

Rough $tntcn|cnt Preclse Stotement
1 The curye is drawn withoul breaks or gaps. The fuection | is continpous on {ab)
2 There ate g carners in the curve, excepl passibly | The function & differentinblc in the open in_lcr\.rll
al-the end points. ) Jabf. .
3 The two end points of the curve lic on the same f(s) = f(0) -

herizonlal line,

4 Tlic carve ndmils a horizonla! tnngenl (drawn asa | (¢) = 0 for some ¢ in Ja; bl.
dotted Ling) al some painl,

The line joining the two end poinis may be imagined to be pushed upward or downward;.
. “keeping il always horizontal, nnd keeping the curve unmoved. Then there is a position,
. shown by the dotted ling, where it touches the curve. This makes us believe that the fourth
property holds for all the funclions satisfying the first three properties. This is what Rolle’s
Theorem states. '

Theorem 2 (Rolle’s Thearem) Lel [ be o Munction conlinvous on the closed fnterval [a, b)
and differentiable in the open interval ]a, b{. Further, let f(a) = (b): Then there is some ¢
in Ju, bf such that £(c) = 0.

We pive some examples below o illustrale this theorem,

Exampie 7. Consider [(x}l = sip a on the interval [0, 2}, All the assumptions of Rolle’s
theorem are satisfied here. (0} = 0 = 1{2m)

Thercfore according to Rolie's thieorem, there should exist ¢ in ]0, 2 such that { (c) = 0.
Here { (¢) = cos c. )

Can we find an element ¢ such that cos ¢ = 07

34 Yes. In (act there arc lwo such points ¢ in 0, 2#[, namely /2 and In/2.

T FE T

[




Fig. 9

At #/2, the function sin x autains its maximum value.
Al 37r/2, the [unction sin x atiains its minimum value,
Both thesc beleng to the interval 10, 2#].

Rolle's theorem asserts that there is at least one ¢ in Ja, b such that £'(c) = 0. Example 7
shows us that there may be morc than onre points in 3, bf, at which f(x) = 0.

In Rolle's thearem, a function l'oln {a, b] has to satisfy three condiliogs.
iy fiscontinuous onfa, b]

ii) [is difterentiable on Ja, b]

iii) -Ka) = i(b)

. Now, wc shall sev through some examples that each of these conditions is essential, We
cannol drap sny one ol them and siill prove tic thearem,

Example 8 Let f(x) = x ~ [x] = fractional parl of %, be deflined on [0, []. This can also
be described as

xif0=Sx <1,
.f(x)=[
. Qifx = 1|,

Here [(0) = (1) = 0. fis differentiable in the open interval 10, 1[. Thus, two of the three
conditions of Rolle's theorem are salisfied by f. The derivalive of [is | al ¢ Zry point
of ]0, 1[. There is no point of J0, 1[ where the derivative is zero. Wit hiappens to Rolie's
Theorem in this example? Obviously, ils conclusion does not hold here.

\The reason is that [ is nol continuous @on the closed interval {0,1]. since & fails Lo be
continuous st 1,

In the next example, we sce that the assum;iuon of dilferentiability i in Ja, b cunnot be
omitted.

Exumplc 9 Consider f(x) ={x| on[— 1, 1]. There isnocin = 1, [ such that (o) =
Actual computation shows that *
=1 if=1<x<0
r= 1 Ho<x<]
does not ¢xist at x = 0.

{ is conltnuous on [— 1, 1),

Also, [{(— 1) = {(1).

But fis'not differentiable in ]— 1, 1.

Qur rexi qumplc shows 1hiat (he assemption f(a) = [(b) is essential in Plie’s Theorem.

Example 10 Lot f(x) = x' on [0, 1). Then [is continuous an [0, ], and is differentinble in
- 10, 1{. But f(0) # (1),

Il Tign und Dowoos

&
\’
I —
0 X
Fig. 10
}
v
/?
N
o T X¥

Vig 11




E

Flg. 12

36

[n this ense F(x) = 3x° 52 0 forany x € {0, )[, Thus, we sce (hat the conclusion ol' Ralle's

theargm may nol hnld when {{a) +* f{h).

LJSH)’, we give an exampte where Rolic’s Theorem is applicable und yiclds a unigque c.

Example 11 L.e! l{x) =" on(~ |, [} Then M{x) = 2‘(
Hore all the three conditions of Rolle's Theorem are satisfied. There is only one ¢, nnmcly

e == Oowch that F () = 0

You will now be able o solve thest cxclfcisc.-;..
"L 4) Cuan Rolle’s Theerem be apphcd 1o ench of tlie fellowing functions? Find "¢’ in case
_itcan be applics, . :
‘) v = sin’x on the interval [¢, 7).
b Kx)=x -+ §on{~22)
@ fx=x-+xon0,1) -
$) [(x) = sin x ' cos x on [0, 7/2),

2) f{x) = sin x — cos x on {0, 2x].

E'S) Consider the function [(x) = x* — 3x+ 2, Prove that f(— 1) = {(4). Find a point ¢
hetween — 1 and 4 such that the derivateve of £ vanishes at ¢. Is this poml the
nmlnmnl of — [ and 47




* E 6) For the same function f(x) = x* — 3x -+ 2, vcr{l’y Ralle’s Theerem on the interval
11, 2).

E7) Let f{x) = ux? + bx + ¢ be the given Tunction. If pand g are two real numbers such

-’.
that f{p) = [(q), prove tint I"[p 3 q] =0,

~ E'8) Couosider the curve y = ax® + bx + c. Let xq be the unique real numbaer such (hat
the tangent at (xo, yo) to this curve is horizontal. Prove that the fupriion v is one-one
on the interval [xo, asf (Hint : If (p) = [q), apply Rolle's theurcm 1 (e interval
(P ab-

e Ups and Do

37 .
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E

E %) Let | be an open intervat of R, Let £ 2 1~= I be a difficrentiable funclion such that f
doct nol vanisk on'I, Prove that Tis onc-one on 1

7.3.2 Lagrange's Mean Value Theorem

Now we shall discuss the mean value theorem. 1L was proved by Joscph Louis Lagrange, a
towering malhematician of the cighleenth cenlury.

We have already mentioned that Rolle’s thearein is a special case of the mean value
tiscorent. Let us recall the stntement of Rolle’s Theorem in the following form.

Let ' be o continuous function on the closed interval {a, b]. and differentinble in the open
interval Jap[, The graph of [is o eurve in the plane. I the endpoints of this curve lic in the
same liorizontal ling, ($hat is, [{a) = [(b)) there is a point-c on the curve where the tangent
to the curve is liorizonlal (l"(c) = D).,

The last seatence can be reslated as follows.

If the endpoints of this curve lic in the same horizontal ling, there is a point on the curve,
where the tangent to the curve is parpitel 1 the line joining its endpoints.

The mean vatue Iheorem asserls the same conclusion, even without the assumption of
horizontality of the line joining the endpoints of the curve, Fig. 13 illustrates this
dillference. Here P and Q arc the ¢nd peints of the curve. The line PQ is horizonlal in Fig.
13(a), but not in Fig, 13(b). But in both the cases the point R on the curve has the
property {hat Ute tangent to the curve at R i parallel to the line PQ. The number ¢ is the
x-coordinate ol R, .

\’
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Fig. 13 (a) ithstrztes Rolle’s theorem, whereas Fig. 13(5) dlisarates Lagzanpe's nean
value theorem.

The two end points of the curve are (n, ffa)) an (b, [(h. e line yoining these (wo
points has the slope ({(b) — f(n))/tb ~ u). Any line puralied 1 tins Bne will abse Inyve the
sume slape. Therefore, the conclusion of tie mean volue earem i

['(c) = [f(b) — f(a)}/{b — u)} or some a < ¢ < b,

This is becguse, we already know Uit [{c) is (he slope of Ihe wagent w e CRIVG al
(¢, [{c)). Now we arc ready to give the precise statement of [l (hearen,

Theorem 3 (Lagrange's Mean Value Theorem) Let [ be » continue... function on i closed
interval [a, b). Let [ be dilferentiable in the apen interval ja. b, T ¢ there is a poind ¢ in
{1y — fa)

the open interval Ju, bf such Qat {'(c) = b—ao

Rolle’s Theorem has three assumptions : n continuity assumplion, ¢ differentiability
nssumption, and the assumption [(a) = f(b),

The inean velue theorem has only 1wo assumpliens, These arc the same as the [irst two
assumplions of Rolle’s Theorem.

Suppose in addition to the two assumplions of the mean value theosem, faj < [(1} also
halds. Then what does the measn value thearen yicld? W snys 1hm

(b} — f
gy = 10— )

Therefore, we get £'(c) = 0 for some 2 < ¢ < b,

for some a < ¢ < b, But [(h) — I{a) = 0.

1

- This is-the same gs the conclusion of Rolle’s theoren. This proves cur contention that
Role’s theorem can be deduced from the mean value thearcrn.

But why thie name mean value theorem? What is the mean valoe liere?
f(v) is the ieitiad value of L
{(b) is the final value of f.

Therefore f{(b) — {a) is the total change in the value of 1. This change has occurred when
the x-coordinate lias changed from u to b. For change of b — a in the domuin, there isn :
change of f(b) — i{a) in the. value of f. Thercfore, the mean vitlie, that is, the average value
of the rale of change is [{(b) — {(a)]/(b — #). The mean vatuc theorem asseris that this
average value of the raie of chunge of [ is assumed it some point ¢ by derivan 17,

We shull illustrate the snne thing by means of an example. Consider 1 car move. 2
time a Lo time b let 1) be the position of the car at time 1. Then the nverope speed .
cur is

distange/time = [[(b) ~ f(a))/(b — a)

According to meenr value theorem, the speedometer, of the car woold have shown this
Lf(b) — (2)}/(b — a) at some lime between a and b, For instance, if the car has travelled
100 kms. in two hiovrs, ot some point of time, ils speed would have been actually

50 kmiph, (which is iis average velocity over the span of {wo hours), ’

Exsmple 12 Let us verify the truth of Lugrange’s mean valne théorem for the funetion
f(x) = x" — 2x on the interval [1, 2.

This is a polynomisl function. Therefore it is continuous on (1.2} and differentiabic in
J1,2[. (We have seen this in Units 2 and 3). Here

g=1,b=2
K)=1—-2=~1
fby=12"- 2%2=0
f(b) — f(a) 0—(—1)

b—a A

We want 1o check that I"(c) = 1 for some ¢ such that [ < ¢ < 2.
Now ['(x) == 2x ~ 2. For what valuc of x will it be 17

[he Tips and Downe
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Now consider 1le function [ fn. b] ~= R whlch sntinfies lhc nsqumpuum of mean vrlue
theorewn. Let p ond g he any two points such that n o op 7 q 3 b Is there some ¢ belween
r anel q such hat

['(c) = {ftq) — Apd)/fg — pi? To answer this, consider lhc restriction of T o the. interval
(1. gk 11 sulisfics the assumpticns of the mean-value-thearem. Therelore such a point ¢
cxisls,

This result can be geometrically interpreted as [ollows. (p, [(p)) and {q. f(g)) are two
poinls on the carve y =5 Mx). ' .

lty) ~

Kpy .
The line joining them is called a chord of lhc curve, -H—I ALl is

-

the slope of this chord. What we have shown is that (he slope of this chord is the same 8s
the slope of the tangent al the point {c, {(c)}. This means, that the tangent at (c, f(c)) is
parallel 10 the chard (see Fig. [4). Thus, for nny chord of the curve, there is a point on the
curve where Lhe tangent is parallel lo the chard.

Exumple 13 i) Let us find the point ¢ in ] = /4, /4f such that the 1angent 10 f(x) =
[(x) = cos x al (e o) is parallel w the chard joming (~m/4, M(-n/43) aad (74, [(re/4)).
i} We shall provc further wthiat for the same ¢, the tangent at (¢, g (c)) Lo the curve
g(x) = cos x x¥ - x is parallel to the chord joining {(— w74, g{— w/4)) and

(/4 g(x/4)).
i)

The siepe of the chard jaining

(— n/4, {(— a/4)) and (n/4, (x/4)) is
f(m/4) — [{(— /8) Iz — /2
‘wld = (— w/4) /2

Therefore we seek ¢ such that '(c) = 0. Wc have ['(x) = — sin x.

The only poinl in }— #/4, 7/4,[ where this vanishes is ate = 0.

The corresponding point on the curve is (0,{0)) = (0,1}

=0

i) p— w/y = (/2

glml/d) = (173 2) + (r2216) - (7/4).

The slope of the chord joining ((— /4), g(— mw/4)) and (w/4, g{w/4)) is

gwldy — g(— w/4) _ (w/4) & (w/4)
wld = (—ald) T (x/d) + (n/4)

When ¢ = 0, we want to prove that the tangent at (¢, g(c)) Lo the curve g(x) also bas

y L (77 /16) = (r/d)

=1L

ihe same slope 1. In other words, we must prove that g =1 .

LEtx)=—sinx + 2x+ L

No
S pOy=—0+0+1=1.

This r.oves that, for both the functions {(x) and g(x) aver }— w/4, w/4[, it IS thc same
point ¢ where the conclusion of the mean value theorem holds.

Lxample 14 For (he curve y, = In x, suppose we want 10 find a point on the curve where
the tangent is parallel to the chord joining the peints (1, 0) and (e, 1},

Since In | = O and in ¢ = [, these two poims (1, 0) and {e. 1} lic ou (ke curve y\——— In x.
Cansider Lhis function on the closed interval [1, e] (sce Fig. 15). It is continuous there. ft is
also differentiaBic on ]1: cf.

Thcn,hrc by the mean value thegrem, there is a point ¢ between 1 and e such that the
tanpenl zi (&, In ¢ is parajlel 1o the chord joining (I, ) and (¢, 1). We have to find this
poinl Nm\. ¥ o= Ak '
fts valuc at (s 1/¢c.




The required point is given by
! _lme=inl _  I=0 |

e e—1 T e=1 " e—1

c=e—1 - -
The required point on' the curve is (e.— 1, In (& — ).

Remark 4 Let f: {8, b] — Rsalisly the assumplions of the mean value theosem, Then '

" 98,0<0 <], suchthat f(b) = f(a) + (b — a) ['(a + 8 (b — a)).

- This is because any boinl c between a and b is of the form a + § (b -- a) for sﬁmc
r 0< o< l.Nolethata =a +0(b — g)and b = n 4 I{b — a). .

Arc you ready for these exercises?

E  E 10)Verify the mean value theorem for f(x) = x* + 1 on the following intervals ‘

e) [-11] b) (—1L2

z . E il)Vcri[y the mean vatue theorem on the interval [0, 2) for the followiﬁg {unctions
8) f{x) = sin =x '
b) Kx)=2x"+3

The Lips and Dawn.
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L 12}a) Letfix) = x' on [0, 1). Find a point ¢ in 10, [ as in (he mean value theorem.

. i)r:m’in;: Curves E
by Let f(x} = x> on [~ 1, O]. Find u point¢in J— 1, 0 as in the mean vulue
theorcm, ’ - .
¢) helf(x) = x on(~ |, 1]. Show thal there arc two points ¢ in }— 1, I[ such that
Ny —-fi—1" -
fle) = ===

p e s 1|

£  E 13)Let fbe a function on {a, b] satisfying the assumptions of the mean value theorem.
Let ¢ be a paint guarsnteed by the mean value theorem. Prove that if

nilx) = [(x) -1
and gax) = [(x} - « for all x in {a, b], then the same point ¢ satisfics

) =g .

T g1 (c)
*and ﬂz(ht), v_.-f,:;(ﬂ = p"x(c) also,

I-
14




|5

E 14) At what point is the tangent (o the curve ¥ = x" paralel 10 tie chorg from
o) (0, Mto(2,2"
by . {0,0to (1, 1V

Just us in the case af Rolle's theorem, there mity be more thun uoe (ratiees at which the
tangents may be parallel 1o the chord joining the end points of a curve represented by a
{unction which {s continuous at every painl in the closed inlerval ard is différentiable at
¢very point in the open interval (sce Fig. 16).

Y'“ .

Y

Fip- 16

Both Rotle's theorem and Lagrange's mean value theorem are existence theorems, They
Lkl us that tlere exists al least one paint where the tangent is pamllel e chord Joining
the end points. Bul they do ot tll us how many such poiats are there, nor how Lo find
these points. For example, consider the funclion

fx)=x"—sinxon[0,5 )

It satislies the conditions of the mean value theoreim. So there is al feasl one value i at
which

3! — cos ¢ = 25+

Flhie Uy and DIy,
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Ihawing Corves

e

The puean value theorem assures s (hl the equation 3x7 = cos % = 25 =" s atleast one
soluliom. ¢ Bag it daes non enable vy e find the valye or yalues of v You ean shucly
methods of solvipg such eguatians w the course iy serics| apalysis,

In (he next section we shiall see how the mean villue theorem lielps us to derive sullicient
conditions for the existence of extreme points of o function.

7.4 SUFFICIENT CONDITIONS FOR THE EXISTENCE
OF EXTREMI POINTS

In Sec. 2 we have seen that a necessary condition for the existience ol i extreme poist af
a given derivable function s 1hat the derivillive is zeco at that point. We hive also seen ®
that the condition is not i sufficient ane. In this section we slill discuss some tests which
give sullizient conditicns for the existence of extreme points, Lagrange’s mean valge

thearem which we hiave studied in Sep. 3 is used in deriving these tests,

7.4.1  TFirst Derivative Test

The fellowing thearem gives a sufficient condilion for a function f 1o have an extreme
vilue al an inlerior point ¢ of its domain. 11 also tells us whethier the extreme value is
minimum or & maximum.

Theorem 4 (FIRST DERIVATIVE TEST) I.et ¢ bie an inferior point of the donmin ol a
Iunciion f. Suppose [ s derivable on Je — &, ¢ -+ 3f Tor some § > @ and that (¢
Then

a) ilf(x} >0 whence — & <x
fa) <Owhene < x < ¢

by ilM{x} <Qwhenc—&<x Z¢c
and I"(a) > 0whesc < x < c i & thes Fhas a minitum at c

< cand
-

&, then [ lus @ maxunum il ¢, and

Prool ) We have o prove that f has a maximnm at ¢. In other words, we have to show
that [{c) = Kx) for all ¥ in some neighbourhond of ¢.

Now, let x € e = &, . Then fis differentiable on Jx, ¢ [ {in fact on [x, ¢]}, and continuaus
on [x, c] hecause differentiability at a point implies continuity there (Theorem 6, Unit 3. By
[.ugF:mgc‘s theorens, there exists a € Ix, ¢[ such that

f(e) ~ f(x)

pa = {u). That is,

fe)-y=C-x'e. ay

Since 1'(x) > 0 on le—dcfanda € s, c[Cle — 8, ¢,
therefore, £'(a) 2> 0. Ao, ¢ — x > 0 since X € Jc — &, c[. Hence, from (1}

()—-fK)y>0orGcy>%x. ~ -~ 2)
Similarly, if x €]c. ¢ -+ 8I, then by Lagrange's theorem, there cxists a peint b € Je, x[ such
that .

[{x} = I{c) = (x — ¢) {'(h). . 3

Since I'(x) < 0, when x & Je, ¢ 4 8[. {'(h) < 0. Further. since x € Je. ¢ + 8{. x — ¢ > 0.
{3 |;ow gives

i) - f{e) < Qorf(c) 2= [(x), TS
Thus, it follows from (2) and (4) thal whather x € Jc .8, c[ or lo ]c ¢+ af, ffei 2 fivi In
otier words, e} = Kx) Vx 2 ic — 8, ¢ + ol Henee %) is o maximum vatue of fand £
|II|N i f'l\.'iXJI'I'I'IHI'I'I ial e

The proot ol part () proceeds on similar lines, See i von can write it yourszif,

12050 Prowe paart thy of T heorenss <l
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We can also ihlcrprcl Theorem 4 as follows.

[T while crossing a poini, moving from left lo right, the derivative changes sign from positive
© negative, then that point must be o maximum. Similarly, while crossing o poml il the
lerivalive cbanges s:gn from negative to positive, then that point must bea mtmmum

"tcmarlt 5 From Theorem 4 we can deduce that when l"(x) >0inan mlt-.rvul the function
"is strictly increasing in that interval, Similacly, I'(x) < 0 in an jnterval would imply that f
§ a strictly decreasihg funciion in that interval. I = 0 In un interval, likewise, means that
he [unclion is & constant function in that interval. We shall talk gbout this in Block 4.

fou should note that the conditions stated in Theorem 4 are sufficient and drc by no means
Lecessaty for the existence of extreme pomts Thus, a function mgy have an cxtreme value

it ¢ even though the conditions gwen in thc Aheorem are not satisfied as shown in the
ollowing example

ixample 17 Let {(x) = 2[s + sin (1/%)], x # o and §(0) = . ) '
Then f(x) > 0 if x ¥ 0,ns x> > 0 and § -+ sin (1/x) > O since sin (1/x) = — L Thus §
ias-a minimum at x = 0. £(x) = 2x{5 + sin(1/x)] = cos (1/x) Vx # 0, and
0+h) -0 ) ’ .
" (0) =lim _______f( )~ 10 Ce _
h—0 h .
. W5+ sin (1/7h)])
- = hm -
- h—=p h
= lhim'o hI(S - sip (1/h)]
© . =0sinced <5+ sin(1/K) S 6

Chus, f"(x) exists for alf x. However, neither i in the interval ]— 8, 0[ nor in J0, 8] does I'(x)
teep the sume sign, no matter how small & is (you may check this yourscll). Thus, the
Juestion of £'(x) being positive or negative on lwo sides of O does not arice.

ixemple 18 Among all rectangles havmg a given area, s there one which makes the
serimeier a minimum?

'uppo.c that the Teagth and the bread(h of the rectangle are x and'y, respectively. Then

> 0,y > 0. The area xy be.mg constant, k¥ say, we have y = k' x™". Then, the perimeter
if this rectangle . . . i

= 2 (length + breadth) , B :
F2(x+ &%), x> 0. Thisis a function of x alone. Lel s dennle ir by i), Thus. oo
X} =2x+ K", x>0 - . ‘ : A5

~




Phawing Curavee

We g that value of x which makes [(x) & wimaunr. The funciion [ is derivable at all
points of ity domain. The derivative i given by

Fexy =210 - (K7/x7)

Now [(x) 5 0 =< % = k' == x = & k11 we assume that k 3> 0, then — K is not 5n
the domain of T. Thus the only crilical paint is x = k. Lel & be iny positive number such
ek A L= L Then Tis derivable aall points of [k - &,k -1 8],

Noxvk —a Kk =<k
oyt K

R

sk
=o'y 0

T | T T B N
i k:/x: {‘ I,_ )
i Uiy 2 0, -

lenie by Theorem <, 1 has a-migimum al x = k. Also, when x =k,

vy okTxTT ek

This means that a square shape yields a minimum perimeter among all rectangles witha -
fxed area,

You should be able to salve the lollowing excrase now,

1 16 Find 11l possible extreme values of each of the loflowing funclions by applying the
first derivative Lest, .

ap Ry = xSt Skt Lo all 50 R
{1t may ke helplub (o Biston i r'ex))

by ffx) = 24" i 5x> — ax® — 2dx - fSforall x £ R
¢ ) == 1Y {x+ Dlorall xER




7.4.2 Second Deri_valive Test - , Pbe vepes aand Dawoan

We how investigate another condition ‘which, if sulisfied, does away with the need to
examine the sign of I (x) in J¢ — 5, ¢ and Jc, ¢ + 8[ us in the first derivalive test. This
- condition also ts only sullicient, but very functional and hence, useful.

Theorem 7 (Second Derivative Test) Let f be derivable in Je — &, ¢+ 5 for some & > 0
and suppose F{c) = 0.

Then

a) Thas & maximum at x = ¢ provided [(c)-cxists and is negalive.

'b) [hasa minimum’at x = ¢ provided (7'(c) exists and is positive,

Proof : a) Since {'(c) < 0, " is a strictly decreasing function in the n-cighl;ourhond of ¢ (see
Rentark 5). Thus there exists an € > 0 (and we may lake it smaller than &) such that
((x) > F(c) when x €Jc — €, ¢[ (since x < ¢) :

and £'(x) < F{c) when x € Jc, ¢ + £ [ (since, here, x > ¢)

Since I'(c) = 0, this means that F()>0whenx€Jc — ¢, ;ﬁd I'(x) < 0 when
xElc+ £ ) g

By the first derivative test it foltows that £ has a maximum at c. Tle proofl for (1) follows
along similar lines. : .

Remark 6 You must have obscrved that this thearem siys nothing abowt the ease when
£'(c) is also zero. In this case the function may have a maxinium or a minimum value or.
neitiier as the following examples slow. T

W) fx)=—x' forallx ER. .
" Her¢ ['(0) = 0 = £(0), but the function has 7 maximum at 0. (see Fig. 17(a)).
i) ()=x"forallxE€R.

Here £(0) = 0 = (0}, but thé funclion has 2 minimum at 0. (see Fig. 17(1)).
i) () = forall xER; . '
) \

Here £(0) = 0 = 1" (0) and the lunotion has neither & maximum nor a minimum at 0 (sce Fig,
17(c)). Thus, the first derivative test doas have some meril,

Yé 1y

f . . !
o} - v T j
- x_— - " 3- /
. " .
N\ g
1-
O T "ol
. 2 -1 1 2 X
0 X .
{a} - {b) ' (c)
' N Flg. 17 )

Example I3 Let us tind the extreme values of the function f defined by
f0y=2x+3/x, forallx # 0
Here, [(x) = 2 — 3/x% and therelore

=0 = x=%372

Also, ['(x) = 6x™%, This means
F(V32)>0and (" (— J372) <0 - _ 47




B

Neawhip Curves ' CSinee 11V I =0 2 11 3720, it follows Irom the seeond derividive 1est that ( fius o

mininunn at \/_5/2 anel a1 maxine - VAT The mininum; vithie ix

I \/372_) ‘='2~Jr_(T. and e maximum value is (- \,-‘;-:':.;fj - 2\;"'6.

Example 20 From ceach corter of a squire paper of side 24 cm, suppose we remave i
squace of side % cn and fold the edies apward 1o Torin an open hox. Lot us try to find that

value of % which will give us a bos with maxinmm capacily, .
2f em i
; ; T T 24-2x em
SN .1 § ' L
i T 1 _—_"'ﬁ"_"] ]
| | | '
| | | |
L | iy
. | | |
| . i i ! |
b ——— e e U
i ! X em
Tig L4
: Clearly, 0 <x < I2f{ora hox 1o be formed. Alsa, the hox thus formed has dimeasions
(24 — 2x), (24 — 2x)and x (sec Fig. 18).
The volame f(x} is a function of % given by .
f(x) = (24 — %)% 0<x < (2 ‘
= ¢x’ — 96x" + 24'x.
' frx) = 12%° — 1925 4 247 =2 12(x = 4) (x = 12)
Now, F(x)=0 =3 x = |2orx = 4.
Sinee 12 is nat in the domain of our fuaction [, 4 is the only eriticn] poinl. Also,
(x) =2d4x — 192.- ) '
) “Therefare, (4) = 96 — 192 < 0.
- Hence x = 4.is o maximum poing of [, The maximum value {(4) of f (that is, the maximum

capacity of the box) is 1024 cm’.
Arc you surprised Lhat the box is noi a cube for maximum capacity? But, had it been o
culye, four squares cach of side-8 em: {lhe removed portions} would have been wasled.
whereas, now four squares cach of side only 4 cm have heen thrown away. There had 1o be
a compromise between she waste material and making the box ns neur a cube as possibic!
"Moral : Mathematics docs not fail cven though intuition may! '

Here are some cxercises for you 1o solve.

E . E [7)Find the exireme paints for each of the [allowing functions. Paint out which of them
.. gre myaximum, which are. minimum and which sre neither. Also find ihe exlreme

“vnluo of I,
ay fix)=xLxER
B Hx)=—x"xER
g [ =3+ Tx 4 1, xER

A} 1) = ae + 2t A anx’ L F aax" where x € R and each g is positive,
. -[Do not get hogged down by the degrae of {x)]

£) Hx) = x/x7 1), 0 n T

(Hint: A makinmm poini o7 ¥ will be the minimum point of 1/ and vice versi).




" E 18)Show that 7/3 is a critical polnt of I, wliere .
X € R.Does [ have n'maximurmi 6 2 mjnimum at this poin®

I(x) = sin x (1 + cos x),

e

.E 19)Show thal he rectangle of maximum aren wi

square,

sich ¢nn be inscribed in a cirele, is n

[Notice that the diagonals of the rectangle must be the dinmeters of (he circle).

The Ups and Daswns

49

=TIx

LR T T




Nrasane orves

E  1L20A man wunis i name-plate witle dsplay areit equal o 48cm’ bordered by Rl wluu,
strip 2 cm aloag top amd baom and 1 cm along cuch of the lwo remaining sides.
What dimensions shauld the plate have so that the total -area of lhc plate is a

minimamy?

75 MORE INFORMATION FROM THE SECOND
.DERIVATIVE

In the previous section we nsexd the sign of the second derivalive at a criticad point 1o
discover whelher the function has @ maximum or a minimum at that puinl, For drawing the
neeessary conclusion we regacded [ as the derivative of the function 1, and then applicd
Ihe first derivative lest. We shall now use the monatanicily considerations of [ 1o draw,
annther conclusion, which would give us an idea abowl e shape of the graph of the
function I, Given thal a fangon | ingreases in (5, h), its graph may be any[lung likec (a), (h)
or {cyin Fip. |9

: .
Iy this .'1L'L'lli‘[l'| we shall use the second derivative 1o delerming the type of graphthe given
RV ! . huaction T has, We shill assume that the Tunction is twice dilferentiable in 11s domain.

“1 - e L TR T T
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Fig- 19

7.5.1 .Conéavity/Convcxityl

Iff”* > 0 in some intervai [a, b], then [ increases in this interval (Remark S applicd (o [').
In other words, as x increases, the slope of the tangenl to the graph at (x, f{x)) increases, so
that the tzngent turns counter-clockwise, This results in the greph bending upward or
bulging downward. Such graphs and functions are known ss canvex, We also use the tlerms
concave upward or convex downward. Such graphs lie below their chord (line-segment
joining the points on graph which correspond to x = a and x = b) and above their

tangents, See Fig, 20(a). -
Stmilarly if {” < 0in (g, b) 50 that [ decreases, and hence slope decreases, the tangent turns
clockwise, Such [unctions are known as concave (cquivalently, concave downward and
convex upward). The graph in this case lies below the tangents and above the chord. (see
Fig. 20(b)).

(m . - {h}

Fig. 20

We sy thet a function [ is concave (convex) at & point, if it is concave (convex) in
neighbourh_ood of that paint,

Remark 7: i) The concavity is towards the chord. If the ehord lies above the graph, 'the
graph.is concave upward. When the chard lies belody the srenh ihe graph i3 Concuve
downward, : )

ii) Bvery convex function is of the form = fwhere [ is concave.

iii} Only concave and convex funciions have the praperty that each of their tangent lines
intersect their graph exactly once.

Till now we were concerned only with the mannerof bending of a graph, Let us now

discuss the measure of the bending 6f a geaph At & point also known as the curvature al
ther point. We mensure the curvature at {c.'[{c)) by the ratio . :

- as

=

v
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7 =
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Fig, 21

R Ir"‘c)
I B e
[V ey]
; |
The rachus af curvature at (e, (e is denoted By pée) and iy defined By ple) = e il
kfe) # 0, v »

You will note that the radins of curvature is positive if the function is convex at thit point
and s negative if the function is concave there.

How does one get this ratio? Oh well! Surely, you don't think this course cavers the why
ol everything about functinns?

7.5.2 Points of Inflection

Suppose (¢ == 0 fur some ¢ € Jn,bl, and 1™ changes sign in passing trough ¢ Thad is,
hax one sign an the lefl of ¢, in jc = 4, ¢f shy, and the other on the right of ¢, in Je, ¢ +
say. Then on one side of (¢, f(c)) the wngents are above the grapl and on the oiher side of
{c, [(c)) these arc betow the graph. This means that the tangent.at (¢, ({c}} must be crossing
Uie graph (Aiso see Fig. 21), :

Such points (¢, {(c)) areknown as the points of inflection of (the graph of) I,

Nate that-we did not really use the fact tiat £7(c} is zero. fn fact (<) = 0 is neither a
necessary nor 4 sulficient condition as you will find out from Examples 21 and 22, A
function may have a point of inflection at x =-c withoul I(c) existing at all. For the
tangent Lo exist, the existence of £'(c) is enough. However, nate that if {"(cy exists in

Je ~ &, ¢ + &( and changes sign in passing through ¢, then F'(c) must be zero. .

Example 21 Consider the function x) = x jxj. for all x € R shown in Fig. 22. This
function cun be rewriticn as '

*irx=0

i{x) = ] .
. —x'ils<0

Hence .
i 2xifx =0
fx)y= [ :

—2xifx <0
Bul 17(0) does not cxist and |,
» 2idx>0
M(x)y=

—2ifx <0

Thus ' changes sign n1 0 and the tangent crasses ihe graph at 0. x = 0 is thus a paint ol
inflection even though £”(0) # 0 (it doey not exist!y. Hlence (¢} = 0 1s NOT a necassary
condilion for fto have a point of infleclion at x = c.

Esxample 22 Let /x) = &, The Tirst derivative test shows that I'hnsg minimum al x = 0,
Thus T does nol hnve  polutof inflection at x = 0 even theugh 10} == 0 (also seo

Fig. 17(b}). This happens because £(x) = 12x? > 0 for ulf ¥ % 0, and accordingly il “oes
not ch:\_ngé sign iw ﬁa{ising' through €, This, () = 0 (hy itself) is not sufficient either, for
l'to have a point of inflection 4t x = c. '

-Examplu 23 Supposc we want Lo find the values of x for whick the graph af ihe function -

I(x) = I/x, x € R\ [0} is convex (i.¢.. concave upward) and concave {i.c. concave
downwird)., We shal) also find if the graph (Fig. 23) has any points of inRection, and the
carvature atx = |, '
Mo () = 0 18500 - 2/ ‘
Clearly, i) T7(x3 = Nirs =0

i) (X1 # O lrany v 1 0], and

i) () v n,

r




It follows from (i) that the graph in question is convex i-2., concnve upward) i 0, =<[.

From (ii} and he fact that [
has no points of infleclion. From iii} we

downward) in] — <o, 0[.

Further, curvature at.x = 1, is

() 2 !

exists for ali x in the domain of f, w
deduce that the graph is concave (i.¢., concave

TWETOYT T+ T s

Example 24 Suppose we wanl (o examine the [enction { for points of faflactian if
[x)=x"" lorell xER, 0 €N,
()= (u 4 1) 5™ () = (2n + 1), 20, 5!

Tierefore, {'(x) = 0 == x = 0. Since "
point of inflection, namely, (0, [(0)), or (0,0
F°(x) < 0, and 10 the right of x
positive) in passing through the origin. Thus the origin j

A(x) = xT

=0, ["(x) = 0. Henee,

{x) exists Tor all x, there can be at most ong -
). Now ta the feft of x =2 0, that is,; for x <2 0),
f” chinges sign {from negulive (o

s paint of infection of

E  EZl}Examing each of the fottowing functions for concavity, canvexity and poinls of

inflection,
) ()=«
B) ((x) = x"
¢} () =x'—2%—12¢" 4 1
dy fx)=(x—2)/(x—3)
£) f(;c)=[nx.x>0 ‘
!) f(x) =cosx, 0 < x << 2%
, _

¢ contlude that the praph

Thie Ups aied Ditiwns
|

10 {z) eaicks_then £ ) = (0) is
a necessary comlition Toe e, [(c)}
. W luz o point afl infleziion

o
e




Drawing Curves

E

£ 223 Find the curvsture ol an sebitrary painl of the graphy of the function
a) Ix) = x5 xc R
by M) =x"+9,xCER
c) {[x] =sinx, xER

d) [x) = /(I “xl), — 1< e

7.6 SUMMARY

In tuis unil we have discussed the following poinds,

i) A funclion [ is snid to have & maximnm (resp., minimum) value at 2 point c of 18
domain if there cxisis a posilive anmbey § such al for all x €J¢ — 8, ¢ 4 &, fix) < fic)
{resp. fix) 2 [c)). Maximum and minimum values ace knpwa ds the extremc values of the
funciion. - .

2Y Alan extreme point € of 8 (unction [ ¢ither Whe derividive does not cxist or is zero.

3) Critical paints for a funetion dre thase where either the derivative does net exist or slse
s the vitlue sero. All extreme points are eritenl points. A critical point may fil 1 be an
exheie ponk.




4) Rolle's and Lagrange’s mean velue theorems, and their geontelrical interpretation.

3} A sufficical condilion for a function T to have an extreme value at x = ¢ is that { is

continuous at ¢ «nd 1he derivative I changes sign in passing through c. IT the change is
from positive (o negalive, ¢ is a maximum poist. In the orher evenl, ¢ is 1 minimum point.
This test is known as the first derivative lesl.

6) Sccond derivative test, anoller sufficient condilion for the existence of extreme points
asserts that if ['{c) == Otheal"(c) > 0 implies [ hos & minimum at x = ¢and - .
F"(c) < 0 guarantees 2 maximum vafue al ¢,
7) 1 °(x) > 0 on some interval then [ is convex on i 07 (x) < 0 then Tis coneave on
it. '
8) 1f f”(c) = 0 or dacs nat exist and [ changes sign in prssing tivougl ¢, then T has a
peint ol inflection al x == ¢. This means the tangenl at (¢, fc)) crosses thic grapi of [l this
point. .

. [+
9) The radivs of cusvalure = ———~——— . [“(¢) + 0,

(e}

7.7 SOLUTIONS AND ANSWERS

EDa all point of R are maoxima as well as minimn.
b) no maxima or minintz on R .
¢} no maxima or mininia on J0, I[ |
d) 0€Risn minimum. No maxima.,
€) x=4disa minimum, x = 16 is u maximun.

L 2) [hasa minimumale == 3§ sueh (hat
M) ¥xEle — 8¢+ 6] ‘
=>Mx) —f(c}20VxE€)c—8,c+ 6"

f(x) —
—H 20c<x<ec+ 8
f{x) — 1
qndu =Ehe—8<x<e
(x —c) :

== RI(c) 2 0 and LI(c) < 0. Bul since T s diflerentiable ul ¢, ['(e) exisls and
LI'(c) = RE(C) = euch is cqual o zero,
= () = 0.

E 3) a) F(x} = (x =3+ (x —'5)-= 2x — 8
(=0 =>x=4¢
W X = 4 is a critica| paing.

b) x=-:',7(—isu:'\/Ts"c1)‘ '
c) X = o4 Dr/2ncy

d) no critical points

c): =0 - H x=0

B} Al ponns x for which 0 =X x = | are eritica!l points because (he finction is
defined as

1~ 2xilx<0
f(xy = lifosx<s1 . - e
12?:- bilx>1,

(X)) =046 <x <1and s sot derivable nf x = Oandzt x = |,

h)y x=1

The Ups and Downsg
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Ed) n) VYes. 3 == 2802 cos % = sin 2x = 0 il x = =/2 € [0), ]
B Yes. fxY=2x=0ilx=0&[— 2, 2)

-c)l No. I'(x) = x4 1 o 0 for x !._[0 L} Rollc:, lhcon. m does pol hold as
Oy »= (H)y .

dY Yes. ['(x) = cosx - sin x=ilx = n/4 E[U, w/l] .

_c) Yes. ['(x} == cos ¢ |- sin % =‘0 ilx = 2z T n &[0, ?w]

L §) ¢=3/2 Yes

E? ap’ 4+ bp + ¢ =aq' +hqg +c ==+ np"+ bp = nq’ - by
== a(p’ — o) + blp ~ g} =

= a{p+q)+-0=0- (sincepq)
F{x) = 2ux -+ | - :

l"(-?--l—):n{p-l'q)'l-b:l]

2

. EB) Suppose [{x) is not (1 — 1) ot fxq, o

b

=> p, q €Txn, 2, such that p ¥ q and Kp) = f(q)
P14 ,
| (—5—) =0byE7).

ptq : i ey =
—5 = Xo 0§ xn is the uniguc point with I'{xs) = @

Therelore cither p < %o or g < Xo, since p and q both cannot be equal to xg,
This iy a conlrudiclion a5 we have laken P q S [xa, »=[.

L 9) Suppose p, g Clat, p % qand i{p) = {q)
[fp < qwehave[p, Q) C 1, fis d1flcrt.nlmb!c en [p, q} and {{p) = (q)

Thus ['satislies the couditions of Rolic’s thearem on (p, gt

=2 {"(xa)} = 0 for some xe €{p, qJC L. -
But this 13 & contraciction.
Therctore is ong-ong

K —K—1)

Et0)) (- 1y=2=K).=—7p——p =0

) =2=0ifx=0

SI0E[ 1, 154 F(0) = r{m :

-0

1) similar

E 11)a) 1(0) =0 = [2)

['(x) = meos wx =>[(1/2) = 0.

)
b) 0) = 3.62) = 1 w%_é_) —4
f'(x)=4x = () =4
f(2) = I{0)

ERN (I 2]51 f(l]*——f*f‘—o—-

- f(1) — 10
12 a) 1(0) =0, f(1)= | ﬁ—(%—?“ = |
Py =31 == 1/4/3E[0 1]  ~a
Le= 1/
' : f0) - f(— 1
FR) =3 =1 = x=—1/\/3 E[—1,0)
Ay




ity —f— 1)

c= I/\/—l’u_. — 173 are two poims in [~ 1, 1]
iy - - 1y, '

s10(e) = —— =
)~ f(a)
Ellle = =
nib) — g l(b) ~ f(u) , ,
il I:}; - i;x 9 _ 1: ! D Fie) = p'te)
g:(bY — pafny  _ I(b) — T(w) e .
T h - g - b~ 2 - = Dier 1 = e

L 1d)a) y1 = nx"". Slope of the chord from (0, 0 ta (2, 2%1s

y: - yl — n-1 *
X — X n-1
el _ mncl W omel 2 o . — 2
=2 =yt = TR E S
n i n

_ 2 2"
point : *—n-,,T,..” '_”T;..-n

B) Slope of the chord from (0,0) to (1, 1) is |
1
T [H-n

" = = ="M=y =y =

- [ ]
po""“[ T R ]

E I15)Let x €)c — &, c[ Applying the mean value theorem to [x.c), 3 € }x, cf, such that

f(c) — f{x) = {'(a) (¢ — x) < 0, since £'(a) < 0 dnd ¢ — x > 0.
Hence f(c) > ((x).
Similarly, if x € Je, ¢ + &[, then by the mean value theorem J b & Jeo af, snch thar

£(x) ~ f(c) = (b} (x — ¢} > O since F(b) > 0 and x — ¢ > 0,
= f{x} > ((c), or f{c) < [{x).
==+ ¢ is a minimum.

E i6)a) Max. at x = 1, min. at x = 3. Extreme values are 0 and — 28. x = 0 is not an

extremum because there is a neighbourhood of O in which F(x) has the same
sign on either side of 0.

b) Minatx=1,x=3
Max, x = ~— |
Extremic values ace — 3, 283, 29

c) Minatx =, max.otx = 173, exteeine values are 0 and 32/27.

E17)a) x = 0; min. point. extreme value = 0
b) There are no extreme paints.
€) ¥ =~ 7/6; min,-pain;; EV = — 37/12

6) I'(x) = xp(x) where e(x) is a polynomial in x¥ with all co-efficients positive,
Hence g(x) > 0 forall x # 0. Therefore the oaly extreme poind of Fis x = 0.
Clearly, ) = ay and f(x) = aw, x # 0. Hence 0 is a min. and .Y is ap.

| |
= — =y e [ A lenes . 3 e - it ; in.
c) glx) i X " LExtreme points-of g are £ 1, | being & min
and == |, o max, Hence Ui a max, aud - 13y a min. for 1. V. =4 1/2.

L 18)max,

The Upn and Dawns

[N
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Brrawing Cueves

, Area =

L l9) H' a and b are the sides of the inscribed rectangle,

thi=d? =Dh=\/d!—n

A=db=a/d —a

—-Olfn—d/\/— i
A "< 0fors=d/\/Z =g =d/2isa max.
n=d/\/_2_ b"d/\/_—-blhcrcclﬂng,lclsa'iQUErc

E 20}Suppose the display arck is a rcclnnglc with sides R ¢m and b cm. Then the
dimensions of the name plate gre u I 2 cm and b 4- 4 ¢m.

,nb-48 == b= 48/a,

=(a 4+ 2) (b + 4) = (a - 2) (48/a - 4)

dA 96
— =d-r = =alE =2 = a=2/06
da
‘ ==-*>Ib=4\f"_3-'
d’A 198

“da

=7 > 0ils = 2+/ 6 => This is n minimum,

Dimensions of the plete: 2(1 + +/ 6 ), 4(1 -+ / ﬁl)

E 21)a)
b)

c)

K,

€)

)

E22)n)

58

Convex in 10, oof; copcave in ]— °°, 0[; point ofinf{cction (P.I) =(0. 0.

Convex in ]~ o2, 0[; concave in 0, «<{ : P.1.: 0, 0)

Convex in |~ <=, — 1{ U 12, f; concave in |— |, 2, P.L: — 1, (~1,-12). (2 —47
Convex il x > 3; coneave il k< 3, no P,

Conenve everywhere; ne Pl

Convex in Jwr/2, 3m/2(; concave in 10, w/2( U P3n/2, 2x[; P15 (/2,0) and
(3n/2,0) .

2 ' — 5in X

(1 + 4xHy¥ (1 + cos’xy*?

0. by &) -1
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UNIT 8 GEOMETRICAL PROPERTIES.
OF CURVES - -

Structure
8.} Intreduction

Objectives
8.2 Equations of Tangenis and Normals
- 8.3 "Angle of Intersection of Two Curves, - o e
8.4 Singular Points . : . -

Tangenls ai e Origin

v Classifying Singular 'nints

8.5 Asymplotes , .

CAsymiploles Pazallgl 1o e Axes v ’

Oblique Asyminiotes ' : ,
8.6 Summary =
8.7 Soluiions and Answers

. - ! II. JI

.8.1. INTRODUCTION .
We started our study of Cateulus by stating (wo problems. One of them was the problem
ol finding a tangenl to a curve al a given poind. Tn Unit 3 we have seen that the sofution of
this problem was instrumental in the development of differential calculs. Now having
studied various techniques of differentiation, we shalt once again take up this problem.
The study of the tangents of a curve will then lead 0s 10 normals and asymptotes ol curves,
whicl we shall study in Scc.2 and Sce.5, respectively. In the lasl unit we discusyed some
other geometric feutures of functions, like maxima, minima, points of inflection ang
curvattire, You will see that alf these will prove very uselul when we lackle curve traging
in the next unit, g )
Objectives _
After studying this unil yon should be able to
© ablain the cquations of the tangent and the nornal (6 a given curve at a given point
@ calcvlate the angle of intersection af {iva curves al a given point of intersectipn
© - obtain the angle between the radius veetor and the langent at a point on-n given curve
€ deftne and idendify a singular point, & node and n cusyr .
.® . definc asymplotes and obtain their cquations.
8.2 EQUATIONS OF TANGENTS AND NORMALS
In Unit 3 we have seen how a tnngent cantbe defined precisely with the help of
derivatives. We biave noted that the slope of a tangent 1o the curve y = {(x) a1 (X, yo) is
given by I'(xo), wienever it exists. In fnct, we had also ohtained the equalions of the
tangents of some siple curves, Once we know liaw to find the equation of a tnngent, it is
casy to find one for a normal loow A normal (o a curve, y = [(x} a1 (xn, ¥o) is a line which
passes through (xg, yo) amd is perpendicular to the tangent at that point. This means that A line Livis perpendicular 1o n line
ihe stope of this normai wiil be ) N ' Il mamy = - 3. where my and
.I 1 . . i are the slapes al s and Ly,

- r'(Xo] Hif I"(x.-.) # (. respeetively. .

Now, whil happens when ['(xs) = 07 ['{xi) = 0 implics thaf Ihe sinpe of the 1angeni at

-{Xv, ya) is zero, that is, this tangenl is parallel (o the x-axis. In this case, the narmal (which
is perpendicular o the tangent) would he parallel to the voaxis, The equation of 1his
normal, swould then he x = xp.

Now fet us look at varions curves and Ley W oblain the egitations of herr (angenis and
naormals. :

HHGE =11

.2

EZ LTS




Drnwing Curves

n = { gives us the Inviul case whe
the curve is the ling ¥ 2= Woiv the
X-2 X%

Recall that the cquation of a line
through (Xa. ya) havmng o slope nos
Ty — Yo=unfx — Y

Y &
“. (Xn ) e
|‘ ’-.:_.'________ J—
Q X
g §
9
Yo = =2

. Flg. 2

i
L]

60

Fxnmpte 1 COml'(h:r the curve y = 23/ ax. a # 0, shown in Fig. |+

: dy g dy
Hu.n., - V—‘:- 2= -—+ Thuy, "y exists and.is nop-zero for all y # . Now y will

be zero nni) if x is vera. Tlml; we can find the equations of tangents and nornals 1o (his
curve 4t any point. except the origin (0, 0). We know that the slope of the tangent ol any
Noint {%q, Yo} will be 2irve, The slope of the narmal will, therelase, be = yo/20. Thus, the
eeuilion of dhe Bogent al (xn, Yol It

Yo v = -;:—l.-(x =~ Xa)

| =2 yyo — ya' = 2ax = 2uxo
= yyo = 20x + yo' — 2ax
= yyn = 2a{x 4 ), since Vﬂ = 4 axa
The equation of the normal al (xe, _Vn) is

Yu

¥ Ye = a7

{x — %n) .

Now lel us sce an example where (he cquation ot the curve is given in the parametric

Torm. In Unil & we have already seen what a pnsameter is.

Fxample 2 To {ind the equations of the t:mgcnt and the normal at the point 8 == /4 (o
the curve given by x = a cos'f, y = a sin'f, (see Fig. 2), we first note that

dy dy/ao 3a 50’0 cosfl

—_ == = - =~ tanl

dx dx/d@ — 3a cos 0 sing

w/4is — lan 7/4 = ~ |, The slope of tho normal

Lence, the slape of the langent at & =
/4, cos = [/ 2 and

at this point thus comes out ta be i, Now, il § =
sin = 1/v/2

Thus, x = 272/ 2 and y = 272/ 2.
The cqu'lllon of the langent al (a/Zﬁ u/Z\/—) is
¥y . }
'Jf 2\/_
That is, x -k y~-—- ur\/—(x+y)--n
NG
The L(]U wion of the ucrmal a (1/2ﬁ n.—’Z\/_) is

Lixample 3 iflustrates Uhe melhod of finding the cqualions ol tangents-and normals.when
the cquation of the curve is given in the implicit form.

I muﬂplu Let us find thc equations of the tangent and the normal to the curve defincd by
by - 6ty = 0 af & poinl {Xe, Ya} on il.

Fig. 2 chows (ki curve,
Y

~{_

IFigr. 3

eus el o e T ]




In Unil 4 we have seen how to calculate the derivative when the relation hetween x and ¥ Geametrical Peopertivs of Curves

is cxpressed implicilly, We shall follow the samic peocedure again. Differentiating the given

ceration throughoul with respect (o x, we get : .

. .. dy ly
I 4 3y ?i- — by — Ox _d;x_ = (1, which mcans

dy _ 2y~ o

dx‘ ..\': —_ 2K . . , - . ]
' .. . 2ya T Xu
Thus, the stape at the point {Xa, Yo} Is --i-—-T ;
- Yoo T AKa

Hence, the equatign of the angent al (xn, Yol is

2)’!; e ?2||= ’
Yy E = (x — Xo)

Yo = 2Xa

© Simplilying. and using the relation xn' 4 yo' = Oxuyn. this reduces to

{2yo — Ko.J}K + {2%n ~ y‘nz}y 4 Zxoyn =0
Now the normal a1 (Xo, yo) is @ line passing through (%n, ¥o) and having slope

— (yn’ — 2%a) , . . ,
—_ — . Henee, the cquation of the normal at (%n, yo) 15
ZYn - xo"
' y..’ — 2%y ( )
Y= Yo = x— X
y yo 2)711 - Nllz "

Simplifying, we got

(yo’ - 2xa)x 't (2y0 — xuz)y 4+ (%o — Yo) (2x0 + Xoyn + 2ya)-= D

I you hrve followed these gxamples, you shovld have na problem in sclving the followlag
CXCICISCS.

E 1) Find the cquations of the tangent and the normal to cach of the following at thc
specified point. N
a) y=x'+ 2+ La{l,4)
b) x = 2 cos{, y = bsin L.at the point given by L= /4
& x4yl =25at(— 3,4)

'
T TET I

6l




Drawiny Cursves

62

E

Yertlerl Tangenis

By now, you arc quite Mmifiar with the fect that ['(x) or dy/dx may not exist &t some
pmnts At such points either the (angent does nol exist, or else,is parallel to the y-axis, that
i5, vertieal, To examine the existence of vertical angents al {xo, ¥o), We examine

dx dy ) .
- R e =10, thcn. we conclude that there is & vertical langent ap -
dy [y=yo " dy |y =vs

{Xn. yo). In such cuses the cquatton of 1he wnpent cin be written a8 ¥ = xa.

The normal corresponding to a vertical taingent will abviously be herizonlal or parallel o
the x-axis. This merns we can write its equation 45 y = vo, a5 its passes 1irough (Xn, Ya).

d
Il‘yuu lake the curve in Exa mpte 2, vou will find thal {} docs not gxist whcn 0= 5s2."

. dx . . dx .
Let us examine -'(Ty_ al this point. y =—ceol =000 = /2,

This means that the curve has a vcrht'ul inngent nad, consequently, a herlzonial normal at
this peint, Now, when 8 = 772, x = () and ) = g, Thus the equation ol‘llu. langcnl at
(0, a)is x = 0 and that of the nermal is y =
See if you can solve this exercise now,
E2) Are there any points on the follownyg curves where Lhe langent is paralled to pither -
axis? If yes, find all such points. -
) y=x =~y — 2

_b) Y

If

sink -

Lel us now fook ql'nnnthcr example.

I‘mmplc 4 To fiod the-cquations of (hmc langents to the curve y = x which arc p.1r1llcl
1o the line 12x — y — 3 = 0, we first obderve it the slope of tie line 12x =~ y—3=10-
is 12, Thus, the slape of any ]mc pirallel 1o this line should also be 12. Now, the slope of

Ihe tangent 1o the carve ¥ = x* al any poinl (x, y) is Frx) = 3xL




If we gquate ['(x) to 12, we wilk pet those paints an the curve where the Langenl i paratiel Gromtetrical Peagertios of Ciirves

o J2x =y~ 3~=0,
Thus, 38’ =12, arx” = 4, that s, x = 1
a

[ 2]

Ifx=2y=x =8 Hx=-=2,y=yx =3

Thus, the points in quéstion are (2, 8) and (= 2, — 8). The equations of the tangents at
Ilese points are
Y—8=12(x-— 2)and y + 8 = 12(x 4 2}, respectively.

“The following cxercises avill give you some more praclice in applying the concepls dearned
in this scction,

E E3) Find the equanons of the tangent and the normat 10 each of the flowing curves at
the paing *t*: : .

a) x=al,y=2m

b) x=all -sint),y=af{l —cos)

E4) Find the equ:ilion ol the tngent {o ench of the ft;lio'.ving curves at 1he paint (xn, yi),
a) Xy A dx+Gy-1=0

b) xy=a ) -

N e ,.___]
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Drowling Curves

bt
|

+

E . ES5) Prove that lhe ling 2x + 3y = [ touches the curve 3y = ¢ at 2 point whose
x-coordinaic is #ero.

E  E6) Prove that the equation of the normal to the hyperbola

y
-

X .
2 X o {alapoint (VT Byisax + b2y = (0} + BV Z.

? 2

a’

o
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Geameirival 'ropestivs of Curses

8.3 ANGLE OF iNTEI}SECTION OF TWO CURVES

The concept of a tangent to a curve lias proved very useful in deseribing various
peomielrical fzatures of (he curve. In this section we shall ook ot ane sueh feature,

When two curves inlerseet al a point, their anple of infersection at tha point cin he
defined with the help of their angents there. In facl, we say that if two cuzves imersect # a
point P, the angle of intersection ot 'Ilcu two curves 4t " is ansingle between the wnpenis

to these curves at I, such that 0 =3 w2 (e Py, A),
1
H!
!
! lI} ;
A NN .
O X

Iiig. 4

We now prove a lhcon.m whtch fives us the angle of intersection at a pmnl when (he
equatians of the two curves are Lnowu

Theorem 1 1I'twa curves y = [(x} and y = gix) interseet 0t a point P(x;, vi), then lhe

angic 4 of intersection OF 1hese curves at {x,, + ) 1s given by
M —g (\nl .

i | + f(XJ "{'\1

tan & =

Proof Trom Fig. 4, ton # = tan (1 = )
’ tan W -- i

U a0 W an b
) r‘(.\'lj'_l;'-l-\ﬂ

e I Mg 63 :
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b )'} =

Fig. 4 shaws M dv 1o pe an seule angle, Butif the curves [and g were a8 in Fip. 5, then
ingle & @ - (V- b sdnee wie ke the acuse angle as the angle of intersection.

jl
v ]

v Is)

[ ]
/3
) ‘(, -
O X
Fip. 5
[ov thas case, lan 0 = lan [r — {\I; = by} = =t (W - )

But we ure nol v a posilion fo decide whether we should iake 1an8 as tan (¥ — €) or as
~ tan (¥ — 1h), unless we have deawn the curves. Since it would be tedious 10 first draw
the curves and then decide, we think of.an nliernate scheme. We observe that since ¢ lies
hetween 0 and 7/2, tan 0 is nan-negative, Thus, we take tin @ 1o be luw (OF — .
o) - ey

1 Cey gisy)

Having proved this theorem, we can easily deduce Lhe following corollarics.

Itence, tan 8 =

Covollary | Two curves = I(x) sl y == g(x)} touch cach other at (xq, yi), that is, have
common angents at {x1, ), 114 =2 S that s, df

Mx) = 570
Corollary 2 Two cueves ent cach othier at right angles, or orihegonally, al (xi. yi) itf
Ceny ey == 1 :

If you suidy Bxample S carefully, you wiil have no difficulty in solving the exercises later.

. - . . e . . : H P
Lxzupte 3 Let us find the angie of intersection of the partbola y* = 2x and the circic

First we find the poinis of jatersection of these curves, if there nre any. The coordinates of
these paints will satisty both the equalion 1o the parabota.and the equation to the circiv.
So substituling ¥7 == 2x in x7 4+ ¥¥ = 8, we pet

ok 2y =8, arx = —dorZ

It is clear from ¢ = 3x fhat the abscissa x (= v'/2) of any cnmmaon point must e non-
negalive. Su we reject the value - ol k. When ¥ = 2, y-= £ 2. Hence the common
points are {2, 2) and Q2. — 2). Since both curves are symmetric aboul the x-axis (see »
Fip. 6 and since P and Q ace rellections of each other-w.rL. the x-axis, il is sufficient to
find the angic af one point, say 1% the angle at Q Loy eqoal o the angle at I
Diflerentinting the 1wo eqimunons w.p. (o s we get

dy . dy

2y - - 2and 2y o Dy
) X . T da

0




Y &

! ~ Fig. 6

Hence the values of '(x) and g'(x), that is, the stapes of the tangents (o the (wo curves at
(x.y) are [/y and — x/y. Hence Lhe slapes of (e tangenis @ (2, 2) to [he two carves are
1/2 and — L. Hence il @ is the required angle, then

12 —(—1)
T+ 172(— 1)
Henee, # = tan™'3 = 71.56°

'mno=l =3

You can (ry these excreises now.

E E7) Find the angle of intersection of the parsbolas y' = dxand ¥’ = dy.

E E 8) Show that

1) the cliipse x* -I- 4y” = 8 rnd the hyperbala x* — 2y° = 4 et each other
orthogonglly {at right &ngles) at four paints.

b) the curves xy = a2’ and x* 4- y* = 227 touch each otier (have o common
tangent) at two paints.

Gewmnetrical Properties #f Curvex
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Drawing Corves

You know that given a puir of axes in a plane, the position of a point in the plane can be
determined if we know its distances from the x-and y-8xes, There is one more way in
which we can determing its position, Suppose we are given an inilin] line OX in o pl.mc..
{sce Fig. 7(a)). Then « poind I can be located I we know ;

iy rils distance from O, and

") @, Ihe angle made by O with OX,

A
) Y
v 4 r
- r
) r
'y
a 4
0 0 ¥ M X
{a) . ) {(b)

Fig, 7

r,and 0 are called the potar conrdinides vf P. ¢ is alwhys taken to 'uc non-negative, and 0
ttkes values between 0and 2o, From Fig. (1) it is clear that if x and y aze the cartesian

68 . . . cooedinates of 2, (hen x = s @ and y = v sia 2. This alyn gives i y* and

o




fan € = y/x. The vquation of o curve 18 sometimes expressed in polar coordinates by an
equation r = (). Far example, e equation of a circle willi centre O and radius 1 js

- F = a. Now lct us turn once agair (o the prollem of finding the angle of interscetion of
W0 curves. '

The method thal we have been foliowing ulf now, c.mn_oi be used i the equatinn of the
curve is given in the polar form, In this case we foliow 0 somewhal indirect method.

9]
fr+ar y03 350

[fig. §

Take a look at Tig. 8. It shows a curve whose cquation is given in e polar form as
1 = i(6). P(r,0) and Q(r -+ &c, 0 + 50) are two points on this curve. PT is the tangent a1 P
and OPR is the line through the origin and tite point P. We shall now try to [ind 0, (he
angle between PT and OR,

We note here, lhat the tangent PT is the hmmng position of the secant PQ. 11 we denote
the anzle betweén PQ and OR by . then we can similarly say that  is the limit of & as
Q-7 atong the curve.

Now from AQPQ we have
OQ _ sin LOPQ -

oF T imiOQr
r+&r _ sin{m— a)

or r sin{a — 80)
' or sin {m — o)
or 1+ = m
- or £L= sin a — sin (« - 80) (since sin {(w — ) = sin a)

r sin(e — 58)
o 18T _ 2coia — 50/2).sin (50/2)

v 50 sin (@ — 80).60

2cos(a — 88/2)  sin (50/2)
T sin (a =80y 40/

As Q—P, ur-'—r.ﬁ 86—0 and 6r—0. Hence as Q-—P, wc gel
I dr cos o

T d&'_ sin o = cot & .

_do
SO thal Ly =75 —.
it lan ¢ =, ac

This formula helps us to find the angle between OP and the tangent at the point P on the
curve delined by thé equation r = [{#). |

Geomedrieal Properies ol Cirrves

Remember the sine rule for a

A ABC?
sin A sin ] sin C
A T ¢
sin A —sin B
—~.0 AT
= 2sin ( ] v f
At -
S 1A 2
eall lim — -
R‘.u",sf_lfn_-lu Py




Liraviiing Curves

0

.

We shall wse this resull Lo lind tie angle netween two curves Cr and C; which interseot al
P tsay). AT the angles between OF and (he tasgents 10 Cy and Co nt P are dy and 4,
respectively, the angle of intersection of C; and C, will he|d) — ¢:| (see Fig. 9.

Tlis can be easily enlenlared as we Know Lan oy and Lan ;.

\ Ly - tan 6h:
Thus, (it [dr — ] = |[—
[ 1 onoan gy am e |

Furiber, il the curves interseel arthagonally, tan ds.lan ¢y = —~ 1. The following examplas
will help clarily this discussion,
Exmmple 6 Suppoese we wint to find vz angle ol manenection of the enrves © = § sin 28

anel 1 #5 a9 cos 20 at (e point PSS, 2 78) The caorchnates of P sinisly both 1he
CHuens r =2 o sin 20 and v = 4 cos 20,

1Ty is the anple between O and 1the ngent o = o sin 24, then

df iLsin i i 20 . !

! B e TR i mmc L% am e w4 ot i 2” R

e N 17 M s VI L 3

Similagdy, il ¢ is the angle between OF and the tingent ta ¢ % a cos 28, then
- di | — 1

Lin chy == I‘—(-l-ll-_-' 5 vt = )

Lt o — lan ¢n 1724 1/2 4

Thus, tan (dn." ) = Pt tmgnands 1 —174 3

P vI » ! - - " -
Chos, ¢ — o = tan ™ {473y = 85.13" which iy the required angle,
Mow try o Jo o fow exercisgs on vour own,

9 Fimd the ansple berwreen g line joining o poinl 1r,8) on the curve 1o the origin and
the taapent for each af the follawing curves.

ay vt afcos 20 b) I/r =] 4 ccosd

e} " o= a" cos Byt a™e s mi) - gin m)




. E 10)Check whether ihe I'dllowi_ng lwo curvis intersect orthiagonally.

1) r=uw’andre’ =D

b r=ua(l Isindyandr = a(l —sin &)

Goamelricat Praunriies of Curves
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Druwing Curves

-t

- When the origin is shiftedl 10 (h, k)
Ihe cansdinates of a poinl 1Hx, y)in
Lhe new coardinale system are given
by

=x-h '
y=y-k

v

- (K}

84 SINGULAR POINTS

In tlns section we shall study a enlegory of points on curves, called singular points, But lo
aroperly clrssify singular peints we have to find (he nature of tangents at these points. So
let us first stndy on easy method of finding the tangents ta a curve nt the origin, This
knowledge will then help vs to ind the tangents at any point of the curve easily.

8.4.1 Tangents at the Origin

AWe shall now give you a simple method of finding the 1angent 10 & curve at the origin,
when the cquation of the curve is given by i polynomial equution. That is, the equition is
of the form { {x,y) == 0 where [ s a polynomial in x and y. You will agree Lhat the
constant lerm in this polynamial is zero since the curve passes through the origin. For such
a curve the cquation of the tangent al the origin can be found out by equating Lo zero the’
lowest degree terms in x and v (we shalb nol prove tis here).

Thus, if x* I 3xy 4 2x 4- y = O is the equation of & curve, the equation of the tangent at
the origin is 2x -+ y = 0.

Similarly, if tha cquation of a curve is 5 4 k= y* = 0, then the equation of the tangent
to this curve nt (0,0} is & — y? =G orx* =y’ orx = * y,

ience we get lwo equations x = y and x = — y, This mesns that the curve 4xly =0
has two tangents al the origin. We shall consider such evenlulitics in the next sub-sectics,

Now, consider o curvc‘givcn by g(x,y)} = 0, where g(x, y) is somc polynomial in x and y.
Suppose we wunl to find the equation of the tangent Lo this curve at some point, say (h, k),
on it. What we do is, we shilt the origin Lo (h, k). Then with respecl to this new origin, the

equation of the curve witl be

g(x + h,y + k) = 0. Wecan also express it by G(x, y ) = 0, where
Gix', y)=g{x + b,y +k) '
Note thal this change of origin does nol chinge the shape of the curve. Now the tangent to

the curve G{x,y) = 0 1 the origin will be the .angent to the curve g{x,y) = 0 at the point
{h, k) (see Fig. 10(a) and (h)).

v
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The method for finding the equation of the tangent at any point of a curve will be clear to
you when you read our next example,

Exampte 7 Consider the curve defined by the cquation ay? = x(x + a)’. Let us find the
squation of the lnugent 1 this curve at the polnl {— . 0.

Tor this, we lirst shift the arfgin ta {~ a, 0). The cquation ol the curve then becomes
ay! = (x ~ a)(x — a - a¥ ’

or ay’ = x (x—a)

TF T

2 P b




We can also write this as . . . Grametrical Propertics of Carves
ca(xd Ayl =% .
Now, the cquation of the mngcn'l to this curve at the origin will be given by
a(x*+y)=0
= +y' =0

L]

=>x2.—_ -t

This is impossible, since the square of any real number has (o be non-negative. Bul we can
write this as x = & iy, where | = +/ — | is an imaginary number.

Thus the equations of the tangenls to the given curve ut the point (= a, 0) are
X + a = = iy (shifting back the origin).

In such cases we say that the crrve has imagindry tangents at the point ( —a, 0) -

" Now that you have scen liow to find the tangents to curves given by polynomial equations,
let us try and-categorise the points on a given curve with the help of the tangents at those

poials,;
Applying the procedure used in the ;Exnmplc 7, you should be able {o solve this exercise.
E_lljFind the cquations of the tangents ot the origin to each of the following curves
) 16y =216 — X
b) - (y = %) =x¢ +3x.
'e) x*+ 6xly — 8y =0,

8.4.2 _ Classilying Singuiar Poinis

An.equnlion of the type y = [(x) determines & unique value of y for a given vatue of x.
Th_u: means, every steaight line parallel to the y-axis meets the eurve y = {(x) in & upique
point. However the equation of a curve is often giycn s i, y) = 0,1 {(x, y)isnol a
linear expression in y, then it may mol be possible o write f{x, y¥) = 0 in Lhe form

y = F(x) uniquely, For exampic, if f(x,y) = y* — &, then {{x, y) = 0 gives _ )
Yo - |
This gives us two rt_:lalions Y=V —x?andy = — /3! — ol the type.y = F(x). 73




Drawing Curver

The curve hns 2 bronches, as you can see rom g, i1,
A
X

A4

Fig. 11,y = o
The origin s commaon to the 1wo branches. Put, differently we can say that two

branches of the circle x* + v~ = a° pass through points A and B, We have a geacric name,
singular points, lor points like O. A precise definition is as Follows.

Definition 1 If k branches of a curve pass through a point P on the curve f(x, y) = 0 and
k > 1, then P is suid (o be a singular point or a multiple poini of order k.

.Singular points of order two are known as double poinis. Thus the points A and B in

Fig. 1 1(c} are double poinls. Obviously, a curve will have more than ong tangent at a singufar
point (on¢ corresponding Lo cach branch). Depending upen whetiier tangents at double
points are distincl, coincident or imaginary, we shall give special names to such points,

Definitlan 2 A double paint is known us

i} anode il the two tangenls at {hat point are real and distine,

i) a cusp if the two langents arc real and coincident,

i) a conjugnte {or isolated) point if the two tangents are imaginary.
n Fig. 12 we show an example of each. For the curve f(x; y) = @, the origin is a node.

For (he curve g{x,y} = 0, the points Pu. P2, Py and Pu are cusps, while the point Q on the
curve hix, ¥) = 0 is.a conjupate point,

e{xy) =0 n(x,y}) =0

74
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In Example 7 we have seen one morc example of'a conjugate point. See if yon can solve
this exercise now.
E [2)Show that (— I, — 2) is & singular point on cach of ihe following curves,

8) x4 242y —y* 55— 2y =0

by x*+ xy* + 20 +y) +dxy +Sx+ v+ 8=0,

Also determine the nature (cusp, node etc.) of this §ingulnr point in both cases.
(Hint : Shift the origin to (— [, — 2) end check the tangents at the new origin.

85 ASYMPTOTES

In this section we shali study another feature of curves which will prove very usefut in
tracipg curves a5 you will see in the next unit. This involves laking limits as x = —~dcoor

Yuou bave COMme Across such limits in Unit 2. Let us define an asymplote now.

Definitlon 3 A straight Ime is snid to be an asymptote to a curve, if a5 & point P moves 1o
infinity along tiie curve, the perpendicular distance of P from the straight line lends to
zr0.

Example 8 Consider the rectangular hypcrbola xy = ceshown in Fig. 13. xy = ¢ impties
y=c/x and this implics that as x — l=’¢'l:>r“-°'=' y—D0, Now |y} is the distance of & point
P(:: }') on the hyperbola [rom lhc X-BXIS. So, we can 2y, thut as x—~ oo or =2 the

Geomeirical Propertles of Curves




Drawing Curves

Pix. y) tends o infinily means
atleust onc of x and ¥ st Leod o
infinity.

75

[

distance of & point, I, ¥) on the hyperboln fram the x-axis spproachies zero. In clhcr
words, this means that the x-axis is an asymptole of the hyperboby,

- 1

4

Y

Y

Tip. 13
Writing Xy = ¢ as x =c/y, and repeating the arguments exactly a5 abave, we ¢an prove
thal the y-axis is also an asymptote of the hyperbola.

shown

'Enmplc 9 1ct us prove that {he x-axis is an asymplote of the curve y= l
. X

in Fig. 14.

From the equatioh of the curve, it is quite clear that y — 0 as x —©0 or — 9, Again, this
means that the distance of the point P(x, ¥} on the curve from the x-axis lends to zero as
x — o or — <2, This proves thal the x-axis is an asymptole of the curve.

8.5.1 Asymptotes Parallel to the Axes

Here we shall derive.tests 1o decide whelher a given curve.has nsympotes parallel to the x
and y axes, For this we shall consider a curve given by i(x, v)=0, where-f(x, y) is a
polynomial in x and y.

Theorem 2 A straight linc y =c is an asymptote.of a curve f(x, y) =0 iff y—cis a factor
of the co- cﬂ"cwnt of tlie highest power of x in (x,' y). . .

Prool Arrange t'(x y) in descending powers of x so that the cqu:mun of the curve is
wrilten ns -

go(y)x" gy L ga(y) =0

l . - .l .
gy} FEi(Y) o e TEaly) — =0
X

The perpendicutar distance PM of P(x, y) from the line y =c is !y— ¢l. (Check this by |
drawing a snitable figure). Now according, to Definition 3, y=e¢ is an asymplole iff PM
tends ta stro as P tends ta infinity, that is iff y ~ ¢ as P tends to infinity. if the’

y- coardinate y'of I — u {a [inile number) as P ends 4o infinity, then its x-coordinale x must
tend Lo infinity. Now since I* is i point on (he curve, ns coordinates satsfy the equation

({x, y)=0

Tr=sT




So, a5 P tends to infinity alang the curve, we get lim  [{x, y)=0
p—oe
From this we can say that y =c is an asvenptote ilf lim  f{x, y)=0
X—=2
¥y—c

Hence, y=c is an asymptote of (1} iff

o | 1

lim {go(¥)+21(y) ?+ tey) — 1=0

X~—+00 X

v=—c )

¢=bgo(c) =0,

<=y —c i a faclor of go(y), the co-clficient of 1he l'ughcsl power of x-in (%, ¥).
This theorcm can also be interpreted as follows.

-Asymptotes parallel to the x-axis arc abiained by cqualing to zero the real finear factors of
the ca-efficicnt of the highest power of x in the equation of the curve.

We can also state a theorem, similar to Theorem 2, giving a test to decide whether a given
. curve has an asyfmptote parallel to the y-axis or not.

‘Theorem 3 Asymptotes parallel 1o the y-uxis are obluined by equating 1o zero the real
lincar l'aclors ax+ b of Lhe co-eilicient of the liighest power of y in the equation of the
curve,

Proof : Similar 1o that of Theorém 2

) Exgmélc 10 Let us-find the asymptotes parallel to cither axis for the curve y = x + Tlc-

Wriling the given equation in the form f(x, y) = 0, we have x7 — xy'+'1 = 0. You cap
- sec Lhe graph of this curve in Fig. 15, The co-elficient of the highest power of x is 1. It has
no {actors of the form ¥y = ¢. Henee there are no nsyrnplotcs poarailel to the x-axis. The co-
efficient of the highest power of y when equated to zero gives x = 0. Hence thcrc is one

-asymplote parallct to the y-axis and moreover, it is the y-axis itself,
See if you can do these cxercises on your own.

. LE13) For cach of lh:, foflowing curves, find asymplotcs parallel o either axis, il there are

any.
a) xy=2+y by xy' = 16x + 20y°
) (x+yY=x"+4 dy =y’ =9(x* +y})
) | ’ 3—-10x
.e) y = o y=—=—

xt+ 1 ‘ e [

Geometricnl Properties of Curves
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The perpendicular distanez of &
paint P(xi, y1) from the line
ex -+ by +c=1ilis

iyt by dc o

Ty
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8.5.2 Obligue Asymptotes

You muay be wondering whether an asymplote must aiways be parallel o a coordinate
nxis. No, there are many curves having asymptoies which are not parallel to cither axis.
Such asymplotes are generally relerred 1o as oblique asymptotes. We shall now learn how
to find oblique asymptotes y = mx -+ ¢ Lo rational algebraic-curves [{x, y) = 0. The
problem is to determine m and ¢ so that y = mx -+ ¢ may be an asymptole to f(x, y) = 0.”

Suppose that the line y = mx + ¢ is en oblique asymptote lo the curve f{(x, y) = 0. This
means that m = 0. The perpendicular distance PM of a point P(x, ¥) on this curve from
|y — mx — ¢

1+ m’)

on the curve only when x {5 also ¥), tends to 2, Thus, as x—o2, PM—0. This menns that

¥y = mx 9 ¢is given by PM = Now, since m 7 0. ¥ can be at inﬁﬁity

ns x—, (y ~mx —¢) ~ Q.

or,fim {(y T mx—¢c)=0

X—o0
That is, ¢ = lim (y — mx). e (1)
x .
Thus ¢ would be known as soon as  is known. Now,
. . Yy =~ mx
lim (i —m)=lim b= mx)
x-—oo X x=—oo X

.
= limn - li —
i, = motim ()

=c0=0  using(l)

Hence m = lim ({—).

x-hm []
T . o - e e Y _ o .
. Thug, given any eurve i{x, y) = 0, we firstfind iim =~ = m ana inen use tnis m o
. i x—c0 -
ctleulnte ¢ = lim (¢ — mx).
N Yo .

* The lollowing cxampie will clarily thie procedure,

'Exnmplé 1t Let us examine the curve x* — y' = 3xy for oblique asymplotes.

Suppose thal the given curve has an obligue asymptate y = mix -+ ¢, The equalion of the
curve can be writtea as '

' _:5’—_y’--3xy='0.v : ) -




Dividing throughaut b x? we get Geemeirleal Propertics of Curves
E g Y 8

J 1
|__}r — —
1 ?- . -0
Tous,fim {12y - 2. 12
aus, ;Tm[ -7 ~ T]-—-O

y y !
.==1—Ilim (—j Y= 3lim (=)lim (—)=20
x—oo X " p—oo X 7,

WO

o1

]

1
= 1 — him (__y_ )—-Osmcchm —;-"-:0

Xx—oo x—o0
=>m’=1 =>m = |, the other roots of n’ — [ = bemg complex numbers,
. Rewriting the equation of the curve as {x — y) (x? + xy + %) = 3xy, we have
c=lim ( xp=1i 3y
= —_— = m D — T —
X—o0 4 x—oo x:+xy+y’]
] —3
= lim —_
il SO A
xy xy xy
_ -3 i X i AN
T+ T F1 . since ;Tm " _“::Tw(") =1.
=-1
Hence the required asymplote isy = x — |,
Try to solve these exercises now.
E 14) Find oblique asympuotes 10 each of the following curves.
8) ¥ +y'=3ax : b) x‘—y'+xy=0

-
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8.6 SUMMARY

'In this unit we heve covered the following points. - ;

[y The equation af the tagent at (xe, ya) Lo the curve y = [(x) is

vy A aa) (X - xa)

; . . dx i
2} The ¢urve has a vertical tangent at (v, ya) if =—— = 0 at 1lus poml,

dy

«3)The angle # of intersection of twa curves ¥ = {{x), y = a(x) is the acutc angle

between Ihe tingents at thal paint to (he curves, It is given by the relation
i r'm TR0
lan & = TP
| TF e
4}y = (x) and v = gix) cul cach ather orthognnally al (xa, yo) if F(3) p'éxe) = — I.

51 The angle & between the tangent and the radius vector of the corve r = [(4) at e
Jf
dr’

peind £ is given by tin ¢ = ¢

6) The l.mgcnt'c at Lthe origin to any curve (which passes through the origin) are oblamcd
Py equating io zern the dowest degree (erms in the cquation of the curve.-

7)) k branches of 4 curve pass through a poinc P on the curve I(x, ¥y = 0 and k > 1, -
then I* is said 1o be a singular point ar a multiple point of arder k. Singutar points of -
order (wo dre known as double paints. A double point is known as 2 node, a cusp or 2
conjugate (isolzted) point 1Lcordmg as the two langents at {hat poml are real and
distincl, real bul coincident, or imaginary.

8) A straight tine is said (o be an asymplote to an infinite branch of a curve, if, as a paint
P on the curve moves o mlinity 110ng the curve, the perpendicular distance of P from
the siraight line fends to zero. .

9] Asymptotes parallel Lo the coordinate axes are obtained by equaling to zero the real
linear lctors in the co-cllicicnls of the highest powcer af x and the highest power ol y
. in the cquation of the cuive.

10) ITy = mx + ¢ is or oblique asymptote of the curve {(x, y) = 0, lim % = m and

X—0oo

Hm  (y —mx) =c.

=T
8.7 SOLUTIONS AND ANSWERS
. : ,
D a) ol B 4. Equition of (he wngentat {1, 4) s

(v — &) =dix - 1}

Stope of the normal al ([ 4} = — 1/4

Equation of Lhe normal al (1, 4} is {y — ) = (— 1/4) (x — I).
) Slope of the tingent = — b/a

Slape of the normal = a/b .
ML= 7r7-1._‘.\' = :u'\f_T_, y 3= h/\f:é-._ Equation of the tangent ;|

{x - h;’\f:! IR LT AR PV
= vl Slope of the tangent - 374 .
Slope of the normal == 4753 -

=
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Equation of the Iulngcnl y—4= (3/4) (x + 3)
Equation of the normal 1 y — § =(— 4/3) (x + 3)

E2) :I1) Tangents are paraflel to the x-axis at x = (| & /7 )/3

b} Tangeals arc paralic] to the x-axis at all points where x = na + w72 lor some
integer n. There arc no tangents parallel (o the y-axis.

E3) 1) Tangent:ty = x + a®
Normal 1y + tx =al(2 + t)

b) Tangent: (1 + cos )y = sin t{x ~ at). Equivalcrtly,
sin (t/2)x — cos'(1/2)y = al gin (1/2)
Normal :sin (1/2)y -+ cos {t/2)}x = 2a sin (1/2) + at cos (1/2)

\E - _ -Xu+2
4) a) _Y_—'Yo—_(‘)m {(x — x

* D) ¥y ¥ = (T YR (x—x)

. d 2 . .
ES) 3y=¢" =% di =-73 . (0, 1/3) is.a poinl on this curve. The tangen? "
at (0, 1/3) is given by ) ) ' :
1 .2 ’
yo3 =T
ordx +3y=1.
i 1
36 3~ =1 =>—|(=)\f‘(b) “/_
a
= Slope of the normal = — a/b/2
. - -
=2 Equation of the normalisy ~ b= ——_ (x — a2}
.o by 2

E 7)_y"' = 4x =>x = y /4 => x*=y'/16 = 43.' ai the poinl of inlerseclion.
=y - 64y =0
=>y{y’' — 64) =0
=¥y~ 4G +dy+16)=
= y = 0, 4 (other roats sre complex)
=>x=00r4,

“Slope of the tangent to y’ =dxal ({4, 4)=1/2
Slope of the tangent to x* = 4y at (4 4 =2
== gngle of mtcrsccuon = tan”™' (3/4)

The tangent at (0, 0) to y* = 4x is vertical, and the langcnt BL(0, 0)tox’ = dy s
horizontal. -

Hence the angle of intersection at (0, 0) is /2.

E B) a) The four poinis are (fVﬁ + \r2—i.;: (= 4/\/?. + -./27

' —g-i:—fqr x4+ 4y’ =8 is — x/dy

. dy =L
T 4 I~

iJII'x:—,y_'—':vTI T

Iy
Y tor 6 — 25 = s x/2y
dx ' -

dy _
Wl a5 V2

They cul orthogonally. Ri
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L% 8)

h)

d)

E1Q)a) .

b)

E 11)a)

c)

E 12)a)

b)

r‘.

E 13)a)

b)

c)
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- Equation : y*

2 = — 247 sin20 2 $@_
r=—2a’5in20 —— —_—
dr dr a’sin 20
2
=> angle = tan”' (r ii-‘:l-) = {an"' ( — ] = tan~' (— co1 20) -
S - \a'in 20
+ 1 ’

= tan"" (tan ( (2n 2 T, 20)

= (2n - ) w/2 + 20.

o, I+ ccosd ) /2 4 o
tan - (— ¢} Qntl)m m
m — /4

s a == I — a da gﬂ_ — I i
r=nc = ac’. o= o =T

=5 tan df} r |

angy S f—=— =— =

dr ac?
. ., do

r’=b =>r=he? = | =—hc”-—dT

S R Nl B

T T per Ak S Soe S
== tan ¢ lan ¢ = — | =« the curves cut arthegonally.

The curves cul orthogonally.

16y = 16x* — x°

The cquation of the tangent is |
16y — 1o =0 =>y' - x? =g
¥ 2xty 4 xt = x4 3x0

The cquation of the tangentis y’ = 0 =y = (.

—

—_—

y==*x

=0ory=0.

C'hangc'(hc origin o (— [, — 2).

Then the equation of he curve is

=N+ 2= 1P+ 2x~ D(y—2) —(y — 2)* + S(x — 1y
—2y—2 =0 )

=o' = x 2yt =0 _

The equation of the tangenis at the origin is

=2y +y'=0

Sy =0y =y,
There are two real and coincident lungcnts et this point. Hence it is a cusp.

After slufung the origin we get the cquanon

=1+ x = 1) (-2 4 2x — 1) +()"—2)]+4(K“l)(5'“2)
+5(x—1)hBy—2)48=0.

The cqunl:on af the tangents at the. originisy! — x? = 0 that is,

=> i’ =x'ory=:y

There are (wo real and distingl tnagents nt this pomt Hence it is & node.

xy=2+y<—fwxy—y—-2=0 ] ]

Highest power of x is 2. The cocefficient of x° is y Hence y = 0 is an asympiote.
Highest power of y is 1. The coefMcientof yis x> — 1 = (x — [) (x + 1),
Hence x = — | and x == | ar¢ two asymplotes. '

No usymptotes parallel (o the x-axis,
x = 20 is on asympiote,

No asymplotes parallel to the y-uxis.
¥ == 0 is an asymptote.




d) }' =x Jare nsymplolc.s. - Geomeiricn] Propertles of Curves
‘x'= % 3 are asymptotes, . : :
, &Y y = 0lsap asymptote.

- f). y = 0is an asymptote,

1498) & +y = 3a¢®
=>1+ (y/x)y = 3a/x

I
‘—-bl+hm (-—)—lm -_—
x—o0 X

=‘-bl+m =0 =’ =—1"=sm==|
. €= lim (y—mx}-—-hm (¥ %%} : . :

x--co
D " 3ax? - 3a :
T e Yy Ty m 1T v/x + (v7%)} _
3a : ?
= THIHT Bl ' ' :
- ,Hence the equation of the asymptole sy+x=a. o : y

b) m-—l ¢ = 0, Equation: y = x
" m'=-=1,c=0,Equlion:y+ x = 0.

e P gt P

%
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"UNIT 9 CURVE TRACING

Structure

9.1 Introduclion

Ohjeclives
9.2 Graphing a Function and Curve Tracing
9.3 Tracing a Curve : Crricsian Equation
9.4 Tracing & Curve : Paramelric Equation
9.5 Tracing & Curve : Polar Equntion
9.6 Summary
9.7 Solutions and Answers

9.1 INTRODUCTION

A picture is worlh a thousand words, A curve which is the visual image of & functional
relation gives us's whole lot of informaiion about the relation. Of course, we can also
obtain this information by nnn!ysmg the equation which defines the functional refation.
But studying the associated curve is often casicr and quicker. In addition 1o this, a curve
which represents a relation belween two quantities also helps us to easily find the valuc of
onc quantity corresjonding to a specific value of the other. In this unit we shall try to-
understand what is meant by the picture or the graph of a relation like f{x, y) = Q; and
how to draw it. We shall be usmg many results from {he carlier uniis here. With his unit -
we come to the-end of Block 2, in which we hove studicd various gcomclnc.al features of
functional relations with the help of differential calculus. - :

Objecctives

After studying this unit you should be able to -

© list the propertics which can be used for teacing a curve :

e tracc some simple curves wiose cquntlons are given inCariesian, parametric or polat
forms. .

9.2 GRAPHING A FUNCTION AND CURVE TRACING

Rccal[ that by the graph ol a fnnclmn {:D—~ Rwemenn the set of points{(x, f(x)): x ED}.
Similarly, the se( of points {(x, y) : {(x, y} = 0] is known as the graph of the functional -

relation {(x, ¥} = 0, Graphing a function or n functional relation means showing (he points

of-the corresponding set.In a plane. Thus, esscnltially curve tracing means plotting the

,points which satisfy a given relation, However, there tre-some d1ﬂ'culucs involved in this.

Lct 5 see whet these.nre and how 10 overcome them.

itis o[lcn_not possible to piol glt the points orr n curve. The stendard technique is to plot

. somg suitabie poinis and to gat a general iden of iite shape ot the curve by considering |

tangents, asymptoles, singular points, extreme points, inflection points, concavity,
monotomc:lly, periodicity ele. Then we draw a {ree hend curve as ncarly salisfying the
various properties as is poss:bl:. '

The curves or graphs that we draw have o limitation. If the range of valucs of either (o'r ’
both) variable is not finite. then it is not possibla (o draw the comg'zte graph. In such

‘cases the graph is not only approximale, bulis also incomtplete. For cxanp:c cansider the

simplest curve, e straight linz. Suppose we want lo draw the graph of £: R — R such that
((x} = c. We know lhal this is a ling parsliel to the x-axis. But it is nnt possible to draw &




complele graph as this line extends infinitely on both sides. We indicate this by arrows at . Curve Teacing
both ends as in Fig. 1. . '

4 -
- pa .
\ o X_-:
| Fip. |

In the ncxt section we shall lnke up'the pmblcm of tracing of curves when the equation is
glven m lheCurf.csmn form

9.3 TRACING A CURVE CARTESIAN EQUATION

Suppoq;e lhe equauon of & curve is [{x, y) ={. Wc shall now list somc steps Whlch when
taken, will sm:pllfy our job of tracing this curve, .

l) The first step is to dctermme the extent of the curve. In other words we try to f'nd a A curve is symmetrical about a
region or regions of the planc whlch cannot contain any point of the curve. For line if, when we fold 1he curve on
- the ling, the two partioas of the
example, no point on the'curve y® = x, lies in the second or the third quadrant, as the curve exacily eoincide.

x-coordinate of any point’on the curve hos to be non-negative. Thls means lhat our
curve lies entirely in the first and the fourth quadrants.

_ A point to note hcre is that it«is easier to dclcrmmc the extent of a curve 1[ its cqnauon
can be wrillen. cxp‘.l:cttly asy = f(x) or x = f(y).

2) The second step is to [ind out if the curve is symmetricai about any line, or about the A curve is symmetrical aboul the |,
' origin. We have already discussed symmetry of curves in Unit 1. Fig. 2, shows you origin if we gel the same cunve afler
some examples of symmelric curves. rotatig it through 180

Y -&

A Y
Y g
. 3

. 2' ‘
O - 432"
X 0
i

{n) Symmetric about the x-a1ls. (B) Symmeiric abagt the orgin. (c) S'yrmwirtc sbout the line y' = 3,

Fig.2:

v

Here we give you some hinis to help you.dclcrminc the symmetry of a curve,

z). Ifall the powers of x occurnug in {(x, y) = 0 are even, (hen f(x ¥) = f(— x, ¥} and
- the curve is symmetrical about the y-axis. - - 85
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Deuwing Cnrves In this case we need 1o draw the poriion of the graph on anly one side of the y-axis.
Then we can take its rellection in the yeaxis to gel the complete graph. We can
similarly test the symmetry ol & curve about the x-nxis,

) IMRx, ¥y =0-s=2 (- x, ~ y) = 0, then the curve is symmetrical nboet the origin. In
such cases, il is encogh to draw the part ol the graph above the x-axis and rotate it
through 1807 10 get the complele graph,

c) If the equntion of the curve does not chirnge when we inderchange x and y, then the
curve is symmetrical about the line y = x, Table | illustrates the application of these
eriderin for diflleremt curves.

Tuble |
Equfllmn Symmelry
2 y" + y‘ == ) About the x-xis (even powers of ¥)
by Fy e About (he y-axis (even powers of x)
Ayt 4yt a0 About 1he ungin

([(— x, = y) = 0 == I(x,y) = 0)
About hotls axes

{f(x, ) = 1{— x, v} [{(x, y) = 1(x, = ¥))
About the line y =

{[{x, y) = Ky, x})

+y' =10 | About both axes, (even powcrs of x and y) but nat about
: § = X,
(I{x. y) # f{y. x)}

3)  The nexl step is 1o determine 1ke points where the curve intersects the axcs. If we put
y = 0in [{x, ) = 0, and selve the resulting equation for x, we get {lic points of
intetsection with the x-axis. Similarty, putting x = 0 and solving the resulting
cquation for y, we can find the points of intersection wilh the y-axis.

4y Try lo lacaie the points where the function is disconlinuous.
5) Calculate dy/dx. I"Im will help you in lecating the portions where the curve 'is rising

{dy/dx > 0) or falling (dy/dx < < 0} or the points where il has a corner {dy/dx does
not exist).

6) Calculate d’y/dx’. This will help you in locating maxima (dy/dx = 0, d*y/dx’ < 0)
and minima (dy/dx = 0, d’y/ds® > 0). You will also be able to determine the points
of inflection (07y/dx® = 0). These will give you a good iden about the shape of the
curve,

7). The next step is to find the asymptoies, i there are uny, They indicate the trend of the

_branches of tie curve extending to infinity, S '

8] Another important step is lo'determine the singular points. The shape ef the curve at
these points is, gencrally, more complex, as more than pne branch of the curve posses
(hrough them. ’

9) Tinaliy, plot as many pbinl-. as you can, around the points already plotted. Also try Lo
draw Langenls (o the curve al some of these plolted points. For this you will have to
caleutate the desivative at these paints. Now join the plolled.points by 2 smooth curve

\\.AL\.Pl at 'l\"ﬁ:—I O \ﬂh.-\fll‘l!luil;'} The i ngonis will “"'d" vou in "“( L 'hru D“‘"‘

you Lhe dircclion af the curve.

We shall now illustrate this procedure through a number of examples. You will notice,
that it may not he pecessary Lo fake ajl the nine steps mentjioned above, in cach case. W’c

begin by lmc:nn same lunclions wh ch were intraduced in Unmil 1.

Faumple 1 Consiger the function y == 151, Here y citn take only pmiliw values. Thus, the
peaph bies above the x-nxis, Fuether, the I'w‘c!'sn y = Ix1is symmetric-s St the y-axis, On

Hie right af the yeaais, x = 0 aod 50 }x] = % Thus die praph reduces o that ory = x and
20 your haeo2 Lhat this is 1 straight jine ct|u:lllly im.:lim'il e e axes (Fig. 3a) below),
’ \




The curve meets the y-ixis only at the origin. Taking its rellection in the y-uxis, we get the
complete graph as shown in Fig. 3(b). We have drawn arrows’at the end of the line

segment Lo indicaie that the gruph exlends indefinilely.

lL

-
T

() . )]

- I1’-‘|i._ 3: (n)l Graph to the righl of the y-axls.  (I3) Complefe grupl.

_'Examplc 2 The greatest integer fanction y = [x] is ‘discontinuous at every integer point,
Hence there is & break in the graph at every integer point n. In avery interval fn, n + [ its
value is constant, riamely n. Hence the graph is as shown in Fig. 4. Note that & hollow circle
around 2 point indicates that the paint is not included in the graph.

" A

N 0
2 —0
—o Py
1 [ 1 [ ] ] I
] T 1§ 1 T _
.2 2 d
L 2
*a "o
] -4

Fig. : 4 Graply af () = {].

Example 3 Consndcr the curve Y = x’. Now (x, y) lics on the corve
= y=x =y = (= )= (—x, — y) is on' the curve, This means thal the

-CUrve is Symmctrlc about the origin, Thus, it is sufficicint to draw (he graph above thc
x-nns and j jum lo it the portion obtained by rotsiing it through 180°,

Above the x-axis, y is positive. Hence x =+/y must be positive. Thus, there is no
portion of the graph in the second quadrant. The curve meets the axes of coordinales only
at the origin and the tangent there, is the x-oxis. -

d
-d—i' = 3x’ whlch is' always non-ncgative. This means that as x increases, so docs y. Thus

the graph kccps on rising,
A _|1

_"di"=°’“ (©,0)and —_épis.o_a: (©, 0).

d’y e [(>0forx>0

— x

dx* (< 0forx<0

This implies that there are no extrémc points, and that (0, 0) is a point of infleclion. The

griph has no asymplotes.parallel to the axes. Further lim e =Iljm x and -
x—oo X X—voo .

Curve Traciug
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Druwing Curses

28

- 1
Exomple 4 Consider y = —
K

obviously, this dacx aat exit. This reans that the curve does nol bave any oblique
asympiotes. You can also verify Wbt it has uo singular points. The geaph is shown it
Fig. 5. )

. L I
iii- \

3-

[

Ry P2 X -

Fig. 5 : Graph of y =x"-

. The y-coordinates of any point on the curve cannot be

ncgntwc So the curve must be above the x-nxis. The curve is nlso symmetric about the
y-axis. Hence we shall draw the graph to the right of the y-axis first.

The curve does ot intersect the axes of coordinntes at all,

dy 2 ddly_G sinoe Y < 0 foralls
i S un o R inee —= or ell x 2> 0, the funclion is

non-increasing in 10, ©2[, that is, the graph keeps on [aHing as x increases, Further, since

dy
oy '§ pon-zero for all x, there are no exireme points.

-
.

Similarly, since d_); is non-zero, Lthere are no poiats of inflection. Wriling the cquation of
< :
‘the curye as x’y =1, we sce thal both the axes are asymplotes of lhc curve.

There are no singuler points, Therefore, lhc curve does not fold upon itself. The curve is
shown in Fig, 6.

2
3
Q

=Y

Flg. 6; Graphofy = Iix! _
Example 5 Let us try 10 trace (he curve given by the equation xy = 1

Here we can sce that either x and y both will be positive or both wili te nugutive. This
[means that thc curve lics in the first end the third quadrants.

- . am the first

Funhcr il is symmetric abouwl lhc origin nnd ‘1ane it is sufficient viir..
. third quadrant

quadrant and rotate this theough'180? Lo get tiie portion of the curve




(I, 1} is a point on the curve and x = {/y means that as x increases in the first quadrant, y
decreases.

. X ' L f
Now the distance of my point {x, y) on the curve from the x-nxis = [y| =y = " 0 s

% = po, This means that the x-axis {s an asympiote. Arguing on the same lines we sce that -
the y-axis is nlso an asymptole.
dy- —1 .
w2 3£ ( [or any x. That is, there are no extrema..
. x .

dx
an angle of 135° with the x-axis. Considering ali these points we can trace the curve in the
first quadrant (see Fig. 7(n)). Fig. 7(b} gives the complete gurve.

- d . :
Al the point (1, 1) we have, L A 1, which impties that the tangent o1 {1, 1) makes

i
v
Y
4
3
A
\ :
-3 =2 e —, X
—._ 0 ll 2 3 4
"1 |2
- 13
o o X |]-4
(a) (b)

FIg. 7 (8) Graph of xy = L In the Nest Qudrarit (b} complete graph

The curve traced in Example § is a hyperbola. If we cut ' double gcné by n plane os in
Fig, 8(a), we get a hyperbola. I is & section of a cone. For this reason, it is also cafled a
conle sectlon, Figs. 8(b), (¢) (¢) and-{¢) show some other conic sections, You are slready
familiar with the circle in Fig. 8(d) and the pair of inlersecting lines in Tig. 8(e). The curve
in Fig. 8(b) is called a porabola and that in Fig. 8{c) is called an ellipse.

Tig. B

The earliest mention of these curves is found in the works.of o Greek mathematician
-Menacchmas (fourth century B.C). Later Apollonius {third century B.C.) studied them
exzensively and gave them their current names.

In the seventeenth century René I‘chcurlcs discovered tlizt the conic sections can be
characterised as curves which are governed by a second degree equation in two variables.
Blaise Pascal (1623-1662) prescnted them os projections of a circle, (Why don’t you try
this? Throw the light of a torch on a wall st different angles and walch the dilfercnt conic
sections on the wall). Galileo (1564-1642) siowed that the puth of & projectile thrown

2

o
- -
[

(e)

Curve Trocing |
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Drawing Curves

Fip. ¥

Y
Fig, 10 .
In the seventeenih centiry Johannes Kepler discovered that planets move in elliptical orbits
around the sun. Halley's comet is also known 1o move along 2 very elongated ellipse.
" A comel or meteorite coming into the solar system from & Breat distance moves in a
hyperbolic path. Hyperbolas are also used in sound ranging and navigation systems.”
L;:t's took at the next cxample now, I
Example 6 Consider the curve y = x* + x7.
There is no symmetry and the curve mects the axes al (0, 0) and (- 1, 0).
2 L .. dy ;
= 3x® + 2x. The x-axis is the tangent at the arigin as i 0, at x = 0. Since
—d%= i when x = —1 angent at{—1, 0) makes an ungl.p of 4},5" wilh the x-axis (Fig. | l{a}).
dy _ o o dy d’y
Further -c-l-—, = 6x + 2. This means (0, 0) is & minimum point ns - 0 and :I-—, >0 at
' . ¢ . -
: o o dy Ay
x =0.(—~2/3,4/27) is &« maximum poinl By = 0 and ™ <0atx =~—2/3 Thus
- X
in Fig. 11(b),Q is a vallcy and P is a peak,
A : ¥ 3 A
Y. Y[ Y
/
. r ]
’l e ? \\
/, P PR
K I’ —— / \J
/ / . / N -
J . . J e ‘h_-___ —
. ,’{ 1 " O ! - ”{ 1 o X ‘ ) JIJ 1 \\ o . X
;-
“y _ | / ) / .
(a) (b} (c)
Flg. 11
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obliguely (Fig. 9) is & parabola. Pataboloid curves nre also used in arches and suspension
bridges (Fig. [0). Paraboloid surfaces are used in telescopes, search lights, solar heaters
and radar receivers. -

iy




d’y I :
dv(:. SQatx=~ 3 ond chierges sign from negative to positive as x passes

through — 1/3,

Hence (~ 1/3,'2/27) is r poini = . sction,

dy . Coody | ) -2 . -
O = X(3x -k 2). Henee Zr - % when x <'-T of & > 0,

2 . . dy .
If.— EX < x << 0, then i < 3. Thus the graph rises in ] — o, —2/3 [ 2nd J0, °of, but
falls in }—2/3, 0. ;

Curve Tracing

As x tends to infinity, so does y. As x ~ — o, 30 docs y. There zre no asymptoles. i
- \f -
Hence the graph is as shown in Fig, 11{c). 6 -
8o far, all our-curves were graphs of functions. We shall now trace some curves which are
not the graphs of funclions, but have more than one branch. 4 b
Example 7 To trace the semi cubical parabola y* = x’, we note that x™is slways non-
negative for poinis on ihe curve. This mesns x is always non-negative and no porlion of 2F
the curve lies on the left of the y-axis.
L . I o
There is symmetry nbout the x-axis (even powers of y). O 123 X
The curve meets the axes only at the origin, ' 2k
The tangents at the origin are given by y? = 0 so that the origia is a cusp. (sec Scc. 4 in
Unit 8). -4
in the first quadrant yincrenses with x and y = c0 a5 x ~» o, - 6 -
There ere no asymptotes, extreme points and points of inflection,
+aking refiection in the x-nxis we get the complete graph as shown in Fig, 12.
+rusapte § Buppose we want to trace the curve
. _ Fig. 12 : Semd eubicat
PEET -3 (X - 4}. parabala, y! =x?
= T2 we gel o nepative value for y* which is impossible. So, no porlion of the curve
fes ez " laft of the line x = 2. For the same resson, no portion of the-curve lies between
helinze 2 = 3and x = 4, '
Mnoe y eouuts with even powers atone, the curve is symmetricak about the x-axis, We may
WS trag it or points above (he x-axis &nd then gel & reflection in the x-axis to complele
Lic granh, .
Theveve meets KR 2%es in noints A(2, 0), B(3, 0) and C(d, ). At cuch of these points,
i cirve has & variical tangent (sce Sec. 2 of Unit 5). Combiniag thesc facts, the shape of
At cuEve 225r &, B C must be s shown in Tig. 13(a).
P v I Co, 4 y
A b Y Py Y o
I 1 1 . ) \ 1 1 )
Lo . Coon oy
; :
) 1 ! : | | I I
I I : ! | \ ! 1
bl R P
Ay B e Y - b~ .
) T X o TR o ~ X
i
(o ! X b Lo
U ' ! ot
Lo N |
Lo S o
o .
! 1 t . : 1 1 f I
() : (b} (c) »

Fic. 13

o1




Drawing Curves
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Let us akey > 0 (i.c., consider points of the curve above the x-axis). Thea

”

dy _ 3T — 185 +26 - This
dx N R TR hisiszeroatx = 3 £ 1/3/3,1a =3 + 1//3

_nnd B=3- I/\/?. then e lics between 3 and 4, and ¢an therefore be ignored. Alsa,
A~ Bx+260=3x— B {(x—a)and 2 < B <3 < a Forx€J2, 3f, x — « remaing

d .
negative. Hence for 2 << x < B, % > 0 siace (x — «) and {x — f) ar¢ both negative.

d
Simitarly for 8 < x <3, _d%- < 0. Hence the graph rises in )2, 8] ond falls in 18, 3(. Thus

the shape of the curve is oval above Lhe x-uxis, and by symmetry aboul the x-axis, we can
complele the graph betweea x =2 and x = 3 as in Fig. 13(0).

Now let us consider the portion of the graph 1o the right of x = 4. Shilting the origin to
(4, 0), the equation of the curve becomes

V=x(x+ D +2)=x 43+ 25

As x.increnses, o does y. As X ~ 0, go does y (considering polnts above the x-axis).
When « is very small, x* and 3x? arc nogllgible us compared to 2x, so that near the gncw)

origin, the curve is approximuiely of the shape of y? = 2x. For large values of x, 3x* and
2% are negligible as compared to x*, sa that the curve shapes like y’' = x* for large x. Thus,

at some point the curve changes its convexity.
This conclusion could tlso be drawn by showing the existence of n point of inflection. .

There are no asymplotes or multiple points.
Considering the reflection in the x-axis, we have the completc graph as shown in Fig. 13 {c).

Exn-mpln 9 Let us trace the curve o~ Dy —4) = 4.

There is symmetry about both axes. We can therefore sketch the graph in the first -
quadrant only and then take its reflection in the y-axis to get the graph ebove the x-gxis.

The reflection of this graph in the x-oxis will give the complete graph.

Notice that the origin is & point on the grapl and the tangents there, are given by

4x* 4+ y* = 0. These being imaginary, the origin is an isolated point on the graph. The
curve does nol meel the nxes at eny olher noints,

For x > 0, y > B, the equntion (x* — 1) (¥* — 4) = 4 shows that x should be greater than

| and y should be grester than 2, Jf
Y |
| 1
: |
I
! 1
: ]
i
I
l |
! I
) )
Ty Sy Sy S
r2 !
1 I
| !
-1 0 ¥ X
| I
___-—.4..__--—-4.——-—[--——]- ——————————————
N - ! —
I
I
|
1
i
1
]

Fig. II




Equating to zero the coclficients of the highest powers of x and y, we get y=:2 and Curve Tracing

=% | as asymptotes of the curve. Thus, the portion of the curve in the first’quadrant -
approaches the lines x = 1 and y = 2 in the region far away from the origin.

In-the first quadmnt.'ns x incremses, so does x* — 1, and since 1= 1= ( 4)
R N y - |

y decreases as X increascs.

There are no extreme points, singular poinls or points of inflection.

Asx — o y— 2and as y — 9, x - 1. Ilence the graph is as shown in Fig. 14.

Example 10 To trace the curve y° = (x — 1) (x — 2)° we note that there is symmetry

about the x-nxis.

No portien of the curve lies to the [efi ofx=1.

Points of intersection with the axcs are A(1, 0) and B(2, 0) and the tangent at (1, 0) is
vcrllcal Shifting the ofigin 10 B{2, (), the curve lnnsforms into y? = x*(x + 1). The

tangcnts at the new origin B, are given by y’ = x*. This means that B is a node, and the
tangents at-B arc equally inclined 10 the axes. Let us try Lo build up the graph above the
x-2xis between x = 1 and x = 2. Dilferentiating the equallon of the curve with respect Lo

X, we get

2yy =(x—2 +2x—- N (x—2),
= (x=2)(3x—4).

o x=(3x—4)

ory = 2y

when L <x< 2 (x—2)<0.1fyis positive, then y' > 0 provided 3x — 4 < 0. Thus
y' > 0 when x €)1, 4/3{and y' < 0 which x €14/3, 2. The tangen is paralle! (o the
x-oxis when 3x — 4 = 0, that is, when x = 4/3 (sce I‘1g IS(a)) Hence, for 1 < x < 2,
the curve slmpcs as in Fig. 15(b).

Now forx 2> 2, As X — o y — ea,y — oaiin Lhe [irst quadrant, Nole that when B(’Z, 0) is Laken
as the origin, the cquation of the curve reduces (o
Y =rxx+ [} =%+

This shows that when x > 0 and y > 0, the curve lies above the line y = x {on which

_ ¥ = x%). Hence the final skeich (Fig. 15 (c)) shows the complete graph.
b ) 4
v Y Y
f N
1. T A
1 ! 1 [N -
1 1 - \\ '
[ : : .- 7
}/\ '/\\",1
O I} 1 2 x. ol 1 uz\_“ > 0
. ‘ :
! L :
rd
. (a) (b} (c) -
Fig. 15
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tf you have gone threugh iixamples 1---10 carefully, you sheuld be able to do the
following exercise.
E i) Trace tise curves given by

) y=u¥ b oy (e )

¢) v(l +x)==x dy ¥ =0~ 1Y

(Graph paper is provided at the end of this unit.}

9.4 TRACING A CURVE : PARAMETRIC EQUATION

Somelimes a functional relitionship mzy be defined with the help of a parameter, In such
cases we are given a pair of ¢quations which relate x and y with the parameter. You have
already come scross such parametric cquations in Unit 4, Now we shall s¢c how to trace a
curve wlose cqualion is in (he pararmetrie form. '

We shall illustrate the process through an example. .

Exnmple IT Lel us drace the cycloid x = afl 4 sim), ¥ = a(l — cos Uy as t varics

from — wto .

dx

dy .
PRl a(l 4- cost), TR a sin i, s0 that

dy -’ dx .
% = (an (1/2). Since T> Oforallt €} — ar, o[, x increases with t from — awr {at
t=—mlolfat=0wamr{all = ),

d : :
Also, -d—‘I- is negative when ¢ € 1—mr, 0] and positive when t € 0, #[. Hence y decreases

from 2a to 0 in [— 7. 0] and increases from 0 to 2a in [0, 7). Lel us tabulate this data,

tE[— 0] LE{0, 7]

i} x incrcases from —alo O i) xincreases from Qtoa

ii) y decrenses from 2a 160 0 ii) y increoses from O to 2a

ii1) Hence the curve [afls

itiy Hence the curve rises

Also, al the terminal poin(s == 7, 0 and  of the intervals {— w, 0] and [0, ], we have th
lollowing. .

dy dx T
L {x.y) Te ay angent
- {(—am. 20) nol defined 0 - werlical
0 (0, 0) 0 nol defined horizonlal
T (am, 2n) not defined 0 vertical
Oun the basis of the data abutated above, the graph is drawn in Fig. 16.
.
L} \!
o Tl . - .
1 Fr ey LALTE , 20)
! /
|
' !
! !
) - ] T
! o p K
| :
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Remari [If is increased by 25, x 33 inereased pr 2era and y does not change. Thus the : Curve Teacing
complete graph can e obwined in intevais o[- S, - 3l [ e — o, [, Ror],
[3m, 57) ... by meze wanslaton theough a proper distisce.

“The cycloid is known s the Helen of genmetry hecavse B was the caine of wany dispujes
among mathematizizas, 1L g many interasting propertics, ¥ hadi deieribe just one of

- then here. Consider this guestion : What spape should be piver in 1 frough comecting
Iwo points & and .50 thai 2 ball rolls from A W B s the shortest poszie time?

Now, we know (hat the shortesl distance between A and B would Le zlonp (he Jine ADR
(Fig- 17), But since we are interested in the shottest time rathier then distance, we must
also consider the fact thal the ball will roil quicker, il the trough is stceper ol A. The Swiss
mathematicians Jakob and Johaan Berpoulli proved by exuct calculations that the trough .
should be ninde in the form of zin arc of n-cycloid. Becuuse of this, a cycloid is also called

the curve of the quickest descent. A
. FFE"H"@
The cycloid is used in clocks and in. leeth for gear wheels, Tl can be obtained as the locus W
. . - - . Y N
of a fixed point on a circle as the circle ralls along a straight line. W4 T
: (%Y \:\ ™
. - . . % N e
Sce if ycu can do this exercise now. Vi@ Sra. o Sea
"\.";--..____ \.‘"""'-"‘L"--.._H s B

E 2) Trace the following curves on (lic graph paper given at the end of his unit, SRR IS

Flp. 17

) x=u{tsin), y=ual-Fcost), — 7 ==
b} x=nsin2t(l‘+c052ll, y=ac0521(l—cosl‘_l).OElSrr.

ot y=2a,0< (< 1.

l

c) x

9.5 TRACING A CURVE : POLAR EQUATION

In this seclion we shall consider the problem of tracing those curves, whose equations are
given in the polar form. The following considerations can be uselul in this connection,

Symmetry : If the cquation remains unchanged when 0 is replaced by — 0, then the-curve
is symmetric with reapect to the initial lina,

If the equation docs not change when r is replaced by — r, then the curve is symmctric
about the pole (or the origin).

Finally if the equation docs not chiange. when 2 is replaced by « — 8, then the curve is
symmetric wilh respect to the line 8 = /2.

Extent : (i) Find the limits within which r must lie for the permissible values of 8. 1/ r << a
(r > a) lor some a > 0, then the curye lies eatirely within (outside) the circle r = a.

(i) s negative for some values of 4, then the curve has no portion in the
corresponding region.

Angle between the line joining 2 poini of the curve to the origin and the (angent @ At
suitable points, this angle can be determined casily. Tt helps in knowing Lhe shape of the
(i

curve ai these points. Recnll that angle ¢ is given by the relalion tan ¢ = ¢ it

We shall illustrate the procednre through some examples, Stedy them carcfilly, so thal
YOu can trace some curves on yeur own later,

Example 12 Suppose we wanl 1o Irace the cardiojd r = 4 (1 4 eos 0). We can make the
(cHowing observations. : . o .

Since cos & = cos (— 0), the curve is symmetric wilh respect to the indtial line.

Since — I = cos® = |, the curve lics inside the circle r = 24, ) ’ -

odr . ) dr - .
Tl = —asin § Hence 0 <0 whcn_U <2 0 < 1. Thus r decreases as # increases in 95
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Drawing Curves the intervad J0, (. Similarly, r increases with 8 in ]{.-/Z. a[. Some corresponding values of
: r and & arc tabulaled belaw.

) 0 /2 | W
r 20 n 0)

a0 _- afl +cosD) T+ 2\, This shows that the angl
=~ 5 F3 ) s shows that the angle

hetween the ting joining a point (v, 8) on ihe corve 1o the origin and the tangent is 0 or
m/2 according 1o 0 = 7 or 0. Hence the linc joining a point on the corve 10 the origin is
_ orthagonal 1o the tangent when & = 0 and coincides with it when # = ., N

= — cal (872) = ki (

Combining the above Inets, we ¢un casily draw the graph above Ihe initial line. By
reflecting this portion in the initial line we can completely draw the curve as shown in
Fip 18, Notice the decreasing endii 2a, €1, €2, €1 CIC. '

This curve is ¢alled a cardioid since it resembles o heart

Example 13 Let us trace the equiangular spiral r = ae?“9 o We proceed as follows,

When =0, r = a.
L Y$ dr o . :
' - 0 = r ¢ot @, which is positive, assuming cot & => 0. Hence as 0 increases so does r.

6‘ ‘ o .
r TS = tan @ Thus, at every point, Lhe angie between (Ne line joining 2 point on the

™ . .
\L/ X curve to the origin and the tangent is the same, namely a. Hence the name.

Combining these facls, we get the shape of the curve as shown in Fig. 19,

Tiie equinngulor (or logarithmic) spiral r = ac? " 7 is also known as the curve of pursuit.
Suppose four dogs start [rom the four corners of a square, cach pursucs the dog in frong
Fip. 19 -with'the same uniform velocity (always following the dog in front in a straight linc), then
cach wilt describe an-¢quiangular spiral, Several shells and fossils have forms which are
quite close 1o equiangular spirals (Fig. 20), Sceds in the sunflower or blades of ping cones
arc also arronged in this form. . ‘

This spiral was first studicd By Descartes in 1638, John Bernoulli rectified this curve and’
was so fascinated by it that he willed that an equiangular spiral be carved on his lomb
with the words ‘Though changed, I rise unchanged’ inscribed below it

The spirat r = ad is known as the Archimedean spiral. l1s study was, however, initicted by
Conan. Archimedes wsed this spiral 1o square the cirele, that is, to [ind a squarc of arca
equal 1o that of a given circle. This spiral is widely used a5 a cam to produce uniforni
linenr motion, [t is also used as castngs of centriiugn! pumps to allow air which increnses
uniformly i volume with cach degree-of rotation of the fan blades to be conducled Lo the
outlet without crealing back-pressure,

The spiral 10 = w, due 1o Yarignon, Is known s the reciproen! or hyperbolic (recall that
Xy == a {s p hyperbola) spiral, 1015 the path of o parlicle under a central force which varles
Y as the cube of the dislance.

Now let's consider one last example,

Example 14 To trace the ctirve r = asin 30, a > 0, we note that there is symmetry about
the line @ = #/2, since the equation is unchanged il 4 is replaced by = — 0.

The curve lics inside the circle r = a, because sin 30 = 1. The origin lies on the curve and
this is the only point witere the initin) line meels the curve, - )

r=0 == = na/3, wherc nis any integer. Henee the origin is & multiple point, the
lines & = 0, an/3, 2073, 0, 4 wf3, 5573, 27 vie. being langents al ilic pole.

|
= = 3 cos 30. Hence r inceeases in the'intervals )0, #/6(, Jw/Z, S=/6[, and

da,
o . V7 /6. Jar/2[, ancd decreases in the intervals 1770, w/2{,}57/6, Tw/6[ and )37/2, S#/3(
'% el 4! Mlolice thal r is negative when 0 € Jar/3, 2w/3( or 8 € . dn/3[ or 0 € )51/3, 27,

"Ly m—r——




Hence the curve consists of three lonps as shown in Fig. 21. The Tunctian is periathe and
the curve traces itsell as & increases from 29 on.

“Now try to trace a [ew curves on your own.

E 3) Trace the following curves on the graph pnpu'r prnvitlcd.-

a) r=a(l —cosf),a>0, by r=24 dc¢osd
¢}y r=aces30,a>0. d) r=asin20,a>0
(Graph paper is peovided at the end of (his unit.) .

9.6 SUMMARY

In this unit we have covered the loHowing painls.

1) Tracing a curve y = f(x) or f(x, y) = 0 mecans plotting the poinis whick salisfy this
retation.
7 Criteria for symmelry and monotonicily, equations of tangents, asymplotes and poinls

‘of inflection are used in curve Lracing.

3) Curve tracing is illustrated by some cxamples when tie cquation of the curve is given
in )
a) Cartesian form
b) Parametric form
¢) Polar form

9.7 SOLUTIONS AND ANSWERS

LS

Dotted lines represent tangenls or asymptotes throughoud.

E1) a)

4
Y

b) Shiflting the origin Lo (2, 0) we get y2 = x* which you know haw to draw.

)
Y

Y

Curve Tracing
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EBrruwing Curves

1

e \G_ |r";_
¢}y = x is the tangent at the origin. (0. D). (¥ 3. =), (- {3, —'I"-} are poiat of

J T )
infeclions, x-axis e anasymyptote. Gither %, v are both positve or both negative.
Funciesn ases in = |, ) and falls elsewhere. Graph s shown alongside,

L
v [
£
I's
r
4
rd
-/
2
I/\\-...___ .
0 x
(4
Fd
rd
- ’
rd
Fd
/
¢
¥ . . L .
d) -:- == 1 - x” shows thad the entive curve lies within the lines x = £+ 1.

Tangents at the origin ure y = £ x. Tongenis aw x =" | are vertical,

M.-ixirna al (& I/\/_Z-: 1/4), symmetry about both axes.
’ &

\!

. A
E2) a)
3 ‘
Y
- e f
' )
5 0 X




b)

Ic),

E3) a)

b)

v

o .

O X

oy

\_/

(2a

)

¥
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_BLOCK 3 _INTRODUCTION

This block and the next deal with integration. IT you look ups any haok on enleulus, you
will find tilat differentiation is studied in 1he ﬁrql half, and integration is studied in the .
sccand. But actually, thisis not the order in which these two were discavered. '
Mathematicians were familiar with at least some aspeels of inlegration right from the
fourth century B.C. Differcnliation, on the other hand, was discovered in the seventeenth
century. The Fundimental Theorem of- Caleulus, which establishes the inverse

" relationship between differentiation and integration, was proved fowards the end of the

, seventeenth century. We shall study this theorem in Unit 10. Units 11, 12 and 13 will
acqumnt you with virious methods of integration. You should try (o solve all the
excrcises as you go along. “Praclice.mnkes-a m.ln!wom'm perfect™ applices literally to
problems of lntegraunn' . -

“7,?
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UNIT 10 DEFINITE INTEGRAL

Structure

10.1 introduction Ce . 5
- F 0 TQbjectives
~10.2 Preliminaries 5
- Partitions of 2 Closed Infeival

Upper and Lawer Producl Sums .
" Upper tnd Lower Integrajs ] '

10.3  Definite Integral - 14
'10.4 Fundamental Theorem of Caleulus 20

10.5 Summary . _ _ "4

10,6 Solutions and Answers ' ‘ . 2%
10,1 INTRODUCTYION .

* "Wehaveseen in Unit 3 of Block 1 that one of the problems wiiich motivates! tive coneept
“of n derivative was a peometricnl one -— that of finding o ttngent Lo 1 curve ar a point.
‘The concept of inlegration was also similarly motivated by u geametrical prollem —
that of finding the areas of plane regions enclosed by curves. Some recentby Hiscovered
Egyptian manuscripts reveal that the formulas for Ginding the sreus of triangles and
. " rectangles were known even in 1800 B.C. Using these one could ajso find tie arga of
*. any figure bounded by straight line segments. Bul no method for finding tire arca of
figures bounded by curves had evolved (Il much later.

. Inthe third century B.C. Archimedes was successiul in rigoronsly proving the formaula
, ‘for the area of a circlc. His solution contained the seeds of the present day integril
* ealculus. But it was only later, in the sevenieentls centisey, that Newton and Leibniz
were pble to generalise Archimedes’ method and also 1o extablish the link between
.o -dilferential and integral calewlus. The definition of the delinite intepral of a function,
~ which we shall-give in this unit was first given by Ricmann in 1434, 1n Unit 11, we will

acquaint you with various methods of integration.

You have probably studied integration before. Bui in {his unil we shall adopt a new
approacl towards integration. When you have finishied the unit, you should be able 1o
. ticin our trentment with your previous knowledpe, :

. Objectives

i .
_.-Alfter reading this unit you should be able 1o : i
- ®-definc and calculate the lower.and upper sums of some simple lunctions defined on
‘fa,b}, corresponding to a partition of [a,b],
¢ dcfine the upper and lower integrals of a function,
@ define the definite integral of a given funclion and check whether i given funclion is
" Integrable or not; - -
@ state and prove the Fundamental Theorem of Caleulus,
© usc Ihe Fundamental Theorem to caleulate the definite integral 6f an inteprable
«function. :

'10.2 PRELYMINARIES

We have mentioned in the introduction that Archimedes was able (o find the formula
for the arca of a circle. For this lie approximated a circle by an inscribed repular

polygen (See¢ Fig. 1 (a)). -

‘Further,we can see from Fig. 1(b) that this approximation bocomes betier and hetier
as we increase the number of sides of the polypon. Archimzdes also tried Lo
approximate the arca of the circle by a number ol circumseribed polygons as in
Fig. 1(c}). The area of the circle was thus compressed between the inseribed and the
circumseribed polygons.
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By an ordcred set w:: mean & set, in
w!uch -the order in which its clc-
rnqnh occur is fixed.
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We shall lollow a similar procedure for finding the area of the shardee region shown
in Fig. 2. We begin with the cancept of a partition,

10.2.F Partition of a (,losod Interval

Lel us consider the closed interval [a.b] &€ R, Then we Imvc the folln v clefinitie

Definition T Let xq, X(, Xa......%1. X, he numbers in [a,h] such that

o= Xn =% X <N2'C e Xn-1 X, = AR
Then the ordered set P = {x.x).X2..... X i85 citlled a partition of [a.h},

Ifxﬂmple 1P =0, 144, 172,34, l}andd s = {(],IH."-. 12, 213,607, L}, bivth are

~ partitions of [0.1}.

Morcover,
PeUP, = {0, 14, 13,172, 23,34, 6/7. 1} and P NP, ={L 1721} are also
partilions of [0.1]. See Fig. 3 (1), (1. (c) and (d).

. & bttt H— ¢ e
- 1 1 3 1 1 2 6 !
[+ —- = . = l A — JECH) | n ] 1t .
A 20 4 4 iz 1 ) : N
anoLe . {a) h Fig. X CoAd
AsetJiscalledasubintervalafan A partition I' =" {xg.x,.% ... Xqf OF fah] divides [ah] into n closed snb-intervals,
, mterval 1, if . .
K i} Jisaninterval, and, ) [xaa ], [xp002) e fxn ox
gt - ' withthe n+ 1 partitioning points asend-points. The interval [x;.,. %] i= calied the ith

" FAisrend ns defta,

sub-interval of the partition. Thedength ol the ith sub-inteeval. denoied by Ax;, is
defined by :

AX; = X; =~ X

It follows that

Eéx = }: (_'}-—Ni—l)=xu*xﬂ:h — 4

|==| i=l - - -

We call partition I redular il every sub-intervai has the same length, thatisif x, — 3
Ka = Xp oueed K Ky A0C Q01 26Ul (0 Lhs caxe, the lenpth of |ab|, thatis b—a, is
equatly divided intom parts; and we pet :
v = o — b=n

XpmXy = Xp—X T T X T Xy T P

Thus, a regular partition of [i,b] may be written as

{a, a+h, a+zh, ... Lt nh}, where w4 aho= b We shall denote this partition by,

.

fa + |h}I 0

ForP={1,3/2,2,52,3. 72,4}, Ax,=x;=Xp= 32~ 1= /2, Axy=5,—%x =
2 - 32 ="1£2_Ti you calculute Axq, Axy, Axqand A .\,,, yau will sec that Pis a repulir
partition of {1 ,14]. e




1 E' ED SceExample1 Whlchparuuonsamoug P,.P-. PyUP, and Py Pyare regular? D bnity Integra)
! , What are the tengths of the third sub-intervals In Py in Pp?

|E  E2) Write down a regular parlition for each of the toliowing intervais.

" 8) 0, 2] with 7 partitioning points.
'b) [2, 9] with 11 partitioning points.

l)ul‘lultlon 2 Given two purtitions I?, and P; of [a,b], we sy traa I’; s i refinement of P.
" (or Py Is finer than P If P, o P

e ~In other'words Pz is a reflinement of P, if cach sub-interval of P, 1s contained in same
sub-interval of P,.
Lxample 2 Cons:dcr the p-lmuons
. Py={1,5/4,372,7/4,2),
By=1{1,06/5, 5!4 3, 19/10, 2}
. Py={1,504,302; 2}
Pl and P,are both finer than Py, as P, 2 Py and P, o Py However, neither is
P, a re{mcmcnl'of PynorisPya 1_cf1ncmcnt of Py. -

IfP; and P, arepartitions of {ab], then from Definition 2 il follaws (har
i) B U P, 'is 4 refinement of botk P, and I’

). P and Py are both fingr than By 1 P,
Now, suppose for cvt.ry n € N we define P, as

Pp={a+i-hza b2-1 2,
Thls meansPyhas 2%+ 1 elemen(s. We can sec that P,,is a reguiar partition. with each A, =% ~5,, E
sub-interv'al h'hvinglcnglh: boa Y AR
n ) =ﬂ'rlj|;-~l:l'|l:l-||-_;l—l i
-a _ 1 b—a @
NQW 2 +l = '-‘2"- (T) i -;bz.l.:]
This means that thc length of the sub-intervals cnrrcspondm;_., to P,y ishalfchelength - :

ofthosecorrcspondmg to Po. Wecanalsosce that Po2 Py, Inotherwards, I,
. is finer than P, (also sce E3)). Thus, we have defined a sequence of partitions {1} af

(a,b], suchllnl P, isa refinement of P, foralln. Suchasequence {Py} iscalleda
scqﬂcnce of refincments of partitions of {a,b].

E E3) From lhc sequence of partitions {P,} defincd above,

- l\ ~ -

l.‘: — 1:I.‘_", 0.

a) Find Py and P;.

b) Verify thar P, 2P, o P,

)" What are the lengths of the sub-intervals in cach of these partitions?

L 2 ’

)
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lnlpp;rql Coleplus |
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- 1
. We have defined Lu b, (sup-
- ) remumy) ond g, 1.b. (infimum) of a
) bounded set of real numbers in
' Unil-1.

E

Ed) Let {P}” bea s_equr;ricc of partitions of [a,b], and let P} =T,

=P UP, Py=PUP,UP,, andin eneral, Pi=P,UPL,. Showthat
: £ .
{P3)7, i asequence of refinements of [4,b],

10.2.2 Upper and Lower Produc Sums

By now, we suppose yau are quite familiir with partitions. Flere we shall introduce
the concept of product sums: Tt is through this that we shall be in a position to
probe the more subtle concept of a delinite integrai in the nexl section,

Let [:[a,b] = Rbea bounded function, and lel
P = {Xy, X1, Xg,1-00i%p} b 2 partition of {a,b]. o

Now for any sub-interval [x;-;, x;], consider the set §; = {f{x) : X € X, %}
Since- f is a bounded function, S; mustbe abound-< <absetof R, Thismeans,

it has d supremum (or least upper bound) and infimur (or greatest lower bound).

We wrile

M- = suP S, =sup {[(x) : X € [%_q. ]}, and
= infS; = in[ {{{(x} : x€[xy, %]}

* We now define the upper product sum U (1".1) and the lower product sum L(P.) by.

wrn = i M; Ax;, I;(P,r) = En; m; A% ' ) (1)
i=1 i=1 '

You must have come across this % notation carlier. But let us siate cldarl)' whiat (1)
means ;

U(Pnf) = M, (x;=xa) + Maxz 1 b4 M, {xq = %q1), and

LR, 0 = my(x; =xn) — my(xe— % + om0, = X )
Thus, to get U(P,[) we hnve mulliplicd the supremum in each sub-interval by the
length of that sub-interval, and have takén the sum of all such products. Similarly,

v L(P,f) is obtaincd by summing the products obtained by multiplying the infimun in
g - eneh sub-interval by the length of that sub-interval, U(P.f) and I{P,f) are also called

Rlemann sunis alter the mathematician George Friedrich Bernhard Riemam;,
Riemann gave a delinition of definile integral thit, (o this day, remaing thé most conveniént
and uselul one, .

W started-this unit saying thal we wanted to find the area of the shaded rcglon in

Fig. 2. Then what are we doing wlth purhtions U(P.0) and L(P.[}7 Fig. 4 will give
you a_clue to the patl whicli we nre poing to follow to achieve our aim.

{n) 3 (h} {c)

Fige o




F‘ig.d(a) and 4(b) give the geometric view of M;Ax; and m;Ax; as areas of rectangles
with base Ax; and heights M;. and m;, respectively.
The shaded rectangles in Fig. 4(a) are termed as outer rectangles, while the shaded
rectangles in Fig. 4(b) are called inner rectangles.
"Thus, when £ is 2 non-negative valued fanction (f(x) = 0%+ x),
,U(P,f) = sum of the areas of outer rectangles as in Fig. 4(a).
L(P,f) = sum of the areas of inner rectangles as in Fig. 4(b), an
U@H - L(P, f) = sum of the arcas of the shaded rectungles along the graph of'

f .in Fig. 4(c).
As you see from Fig, 5, U(P,f) and L(P,f) depend upor the function ..
f:fa,b] - R (compure Fig. 5(a) and (b)), and the partition T of [a,b] (compare

Fig. 5(c) aud (d)).

A . \, =

Y
| ' p—
: ' ]~
J f X / X
A ,__*’, — L
0 1 2 3 4 O 1 2 | '
(;[) . ~ iy
v 4? v &
VV
i
3
Iy b
L - | fed o e
O 1. 3 3 X Ol 121 3 2 s N
(<) ()
¥i. $ {a) U(P,0) where y = x {b) U(P.I) where y? =

(¢) U(P,f) when? = {0, 1, 2, 3} (d) UP.f) when P = {0, 172, 1, 32, 2. 5/2, 3]

AT we denote the area between the curve given by y = {(x}, the x-axis, and (he
lines x = a and x = b, (the shaded arca in by 2 hv A, then it is also quite
clear from Fig. 4(2) and (b}, that L) = A = U},

The peometric view suggests the following theorem:

Tium emt I Let f2]a b] — R bea bounded lunction. and tet P be a pitrlition of
[2,b]. IfM and mare the supremaum ind the inlimum of £, respectively.in a,h],

Defuire Intepral

then
i‘m(b—a) = L{P.f) = U(P,f) = M(b—a). : X CY, ey

. i A X =osup Y.oany
Prool; Now M = Sup {{(x) : x ¢ [a,L]}, and i:;x\:x m?':;

M; = sup {{(x) : x € [x;;, x]}. Hence M; = M.

nc:
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Further, m = inf {f(:.) x € [a.b]}. andt

m'; = inl {f(x) : x €%, x)}. Thus, m = oy This means

m=n; s M, =M ) _ e (2)
Once we have the inequalitics (2). we ean complele our prcli;l' in casy sieps. (2)
implies thal ‘

m Ax = m; Ax; 5 M Ax = M Az,

CThis implics that if we take the sum over i=1, 2,......n, we get

h n
m 3 Ax = LB S URD = M3 Ay

= mb—u) = LI = UPN) = Mba),

the sum of the lengths of all sub-intervals

v n
since 2 A%
=
: - = the length of [a,b)
Fig.¢ "= b-a . .
’ Fig. 6 will ht,lp you understand this theorem betier, Let us verily {his theorem in
the ense ol a given funclion.

Ex.tmplt. Let £[1,2) — R be a funclion defined by f{x) = x*, and let
= {1,5/4,3/2,5/3,2} bea partitien of [1.,2). The sub-intervals a\sncmlt.d with
Parc {1, 5M], [544, 3/2], [3/2, 53] and [543, 2].

The funclion { is o bounded fenction on [1,2]. In fuel, the image set of 1 s
[1, 4], which is obviously bounded.

¥ 7

_Since [ is an increasing function on cach sub-interval (sce Fig. 7) the supremum

- of fin {x, %) will be atlnined ai i and the infimum will be altained at { .
That is, ' :

t M, = f(\) and

my; = f(h, BE “Therefore. we can wrile

UPH = M Ax = XHN) Ax = T8 (x=x.)

X2 (—Kn) K3 (Xe—x() F XL (Xa=Xa). b X5 {(Ny—X3)

I

oo =(3) (4)+ B )+ GF Q) er(y)
-%_}" 19(: + “;_} ' '_ijl,_
4751
1728




) L(P,Q, = Im; Ax; = S(xi_) Ax;, - ‘ Definite Jntegrol /|
uen = o () + () 1)+ (3 B+ ()7 ()
5 -3

Now, the supremum of f(x) in [[,2) = M = [(2) = 2>= 4, and

the infimum "= m = {{I) = 1. Thus,

M(b—u) {4 2~ 1) =4, and m(b—a) = (1) (2—-1) = 1. Thus,

mb—n) = L5 .= UPH = M(b—a).

We. heve noted that the upper and lower product sums depend on the p'u'tmon of

the given intgrval. Here we have a theorem which gives us a relation between the
lower and upper sums correspondmg to 1wo partmons of an interval. .

Theorem 2 Let f[a,b] — R beca boundcd function, and let Py- and P; be
partitioris of fa,b]. Il P, is finer than” Py, then

L(th), S'L(PZ:O = U(Pz_-f) 5 U(PI-O'

Proof: For proving ihlsllheurcm we logk at Fig. 8(a) and (i1),

Let Py = {xg, X1, X20e-0Xo} and Pa = {Xp, V|, X[ X200, ¥} be two parlitions of
{a,b]. P, ‘contains one ciement more than Py, namely, v,.

Therefore, Pa is finer than P,

In fact, P, cun be rightly calied a simple refinement of - Py We shall prove the =
theorem for this simple refinement here.

P, divides. {a,b] into n sub-inlesvals : ‘

(%o, %], '[xh b 2 [ [%a-1s Xn)- AN -

Y"k. ) v

A L

ol e 4 a X O wmowxw o T x X %‘
() (1)

Fig. 8

i

Fig. 8(a) clearly shows that L{P\,f} = L{P,.0) (byanamount repressated by the

-area of fite shaded recrangic).

Similarly, Fig 8(b) shows that U(P..N = U(P.1).

Since L(Pa,N) = U(P,,0), the conclusion of the theorem [ollows in Uus case,

Now if P, is not a simple refinement of Py, then suppose Pz has m clements

niore than Py. Then we can End (m—1) pastitions 13, D3, [T -l

such that )

P,cPichic Pg' C..... PP <P, and each partition in this scquence is i

simple refinement of the previous one.. . , . 1,

fm————-
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Theorem 2 then holds for cach pair of suceessive refinements, and we pot
L0 = LMD = 1LPLD) = ... = LPY'} = L(Paf) and

UP..) = UMEM'H = ... = LPLD - UELD L.

Thus, L{P,.N) = 1{(Pu) = U@P.f) = UMD,

From Theorem 2 we conclude the faliowing :

Let £[a,b} — R-.Dbea continuous and non-negative valned. function, and it
{Pn}:ml be a sequenze ol refincments of [a.b).

Then we have

L(F..0) L(PpD) = ..o = L(PLD = ... s A S..= UPLD ... =
U(Ps,f) = W(P,.f), where A is the aren bouuded by the curve, the x-axis and the

|p|
"

"lines x =2 and x = b,

E5) Find the upper product sum and the lawer product sum of the functien [
refative o the partition 1P, when

I = 1+x°, 0 = {0,142, 1, 32,2}
by f{x) Ux, ' = {1,2,3, 4}

If

a

E6) Verily Theorem 2 for the function ((x) = 1/x. 2 = x = 3, and the partitions

P, = {2, 52,3} and P, = {2,900, 52,114, 3} of [2,3]




In this sub-scction we have seen that the arca A in Fig. 2 can be approximated by
means of the lower and upper sums corresponding to some parlition of [a.b).
Further, Theorem 2 tells us that as we go on relining our partition, the lower and
upper sums approach A [rom both sides. The lower sums underestimate
- A (L(P.) = A), while the upper sums overestimate A (U(P.Iy == A). Letus gaa
step further in the next sub-section, and define lower and upper inlegrals.

10.2.3 Upper and Lower Integrals

Let ffab] — R bean nnu,—hegaliv:: bounded lunction, Then (o ench pattition 1
of fa,b], there eorrespond the upper product sum U(P.[) and the lower Produet
sum L(P,D).

Let P be the set of alt partitions of [4,b]. Then the set o = {uip.n : v c p

is a subset of R and is bounded below since A = UPN NP e P Thus, it i

possible to find the infimum of .

Similasly, the set w’={L(P,5):P ¢ P} is bounded above, since LIP.H=ANPch

Hence we can find the supremum of u’. The infjmum of v and the supremum of

v’ are given special names as you will see from this detinition.

Belinition 3 11 a function { is defined on fa.b] and It P denotes (he <ot of ali

partitions of [a,b], then infimum of {U( 1) : P e P} is called the PPt mteprid o I
Th )

on [a,b], aud is denoted by fl‘{x) dx.

The supremum of (L(P,0) : P € P) .is called the lower integral of [ on [a,b], wad is

It
denoted by jﬂ [{x) dx.

- .- Iy
) . 1]
From Theorem 2 iy follows that f f{x) dx &= A and ,(. I(x) dy = AL
J il =

v R0 '
Thus we lzwc,jl9 (xyds = A = _[I‘(x) tx,

I
| .
Example 4 Lei us E'ind.l 1(») dx ang L, [(x) dx.
. ] b

L Uil x s eationad
for the function f, defined by fx)=¢- = T
Pl x s irrationad,
Suppose P= {x, X;, ¥avere. Xo) B8 8 pastition of |43},
Euch sub-interval fx, x,] contting both ratienal s irrtionat numbers, “Fhis
medins, M; = § and m;, = 0 for each |

Thus,

Ue,f = é M, Ax; = é D EG—x) =1 - 0=

jucl il
and

L) = 2{: m; A-\;; = k“: @) (x;-%;,) = 0,

Since P was any arhitzury partition of 10011 his fucaos ha
D} =1 and L(PL) = 0% pPep

Thus, o = {UPD):Pep} = (1)

and v = {L(P,N:PeP} = {0

Hence inf o = | and sup v’ = 0. That is,

[fyas = 1w [ ioax = o

See if you can do these exercists now.

l\}\-ﬁn::r Tidepral

Ieeall{Unit 1)that every sei which
is bounded below hias an infimum,
aad cvery sel which i~ hounded
whave hat o sprenm.

Thie symbal ' [*is ceac as intepenl,

AR T




E  E7 Fnd !;Il'(x) dx undd [

Infepral (.'u!'.;u.,—. "
f(x} dx. Tor (he Tunction | delned as

-

Jn

f(x) ="2. -

E E8) Ifthe functions [ and g are hounded not-negative valued funetioss in [2.b)

K
. h f I
) | ) o and if f{x) = g(-}.:} in {a.b|, prove thal f [(x¥lx £f g{x)dx  and
. a (]
R Fh
J f(x) dx = [ ofx) dx.
1

T the last section we had restricted our diseussion (o non-negative valeed funetions,

C Botwee cun easiny extend our definilions af LRI, QP and the lovwwer and upyer
'inlcgrizls 1 sl bounded functions, §lowever, we shall have 1o moddily our

inteepretation of these sums ag arcis. For this purpose. we introduce the concept




i

of signed ares, If R is rny r@gioh, its signed arca is defined (o be the ared of its
portion lying above the x-uxis, minus the area of its portion Iying below the x-axis-
(see Fig. 9). : ‘ YJL ’

Nelinfie |III|l‘L'ri:|l

-

" o . Fl'lg. b
With this definition then, we con interpret L(P.) ns the signed aren of a polygon
inscrlbed inside the given region, and U(P.D as the signed area of a polygon
circumscribed about the region. Thus, for any bounded function on a closed interval
v . .

fa.b], we cun define ﬁ. f((x) dx = sup {L(P.0 :_-p-e P} oamd

I

I f(x) dx = in[{U(P,f) : P €P)

Now we are in a posilibn to discuss the deflinite intcgrat for a bounded function on

a closed interval. (The adjective 'de{inite’ anticipates the study of indefinite inlegral
later), -

Definltion 4 Let Lfab] — R be a bounded funciion. 1 is saicl 1o be integrable
over [a,b]) if, and enly if, coo

j 1(x) dx | = Ihf(x),dx.

il
This cammon value is ciled the delinite integral of [ over e interval of
Ir
integration {a.b], -und iy denoted hyf f(x) dx.

In this notation for the delinite integral, F(x) is called 1be infegrand, o is valled
the lower limit and b s called the spper linit of intcgration.

The symbol dx lallowing f(x) inclicates the independent vaviable. Tlere s s merely
1 dummy variable, and we may replace it by 1 or v, or any other leiter. This

meins, .
h I I
[rmyax = [eyan = [y av.

The symbol [ reminds us of § which is approprinie. because a defite integral is.
in some sense, the limit of 2 sum, In Tcl it s the common vatue {when it exists)

-l the lawer ard upper integrals which are themselves infimum G superemom sums.

e use of f(x) dx reminds us that swe do not take the s of Tonciion vidues.,
aher we take the sum ol terms, each of which is (he proiet ol The copepaim o
afimun of the fupction in an interval multiplied Dy the Jengh of the sub-mtenal
The definilion of definite integral above, applies only §f 5 -2 b, Il sowanld b
appropriate to inchude the eoses o = b and o= b anowell Tnsuch coases we detine

_,r(x] dx = 0 : '
H] l.-‘ .
and ,‘ fixyiy = [ f(xY s )
: .
previded the eight hind integral exists, . |5




-

-Inlq;r ol Coledius

In Example 4, we have seen that if
. 0l x is rational
(= [ 0o
' 1 if x is irrationai, then
!

. 1
Jn- f(x) dx = 0, and f f(x)dx = 1.
- (}]

Since the lower and upper integrals for this function are not equal, we conelude
that it is nol iniegrable, ’

79 Check whether the function given in 37) is jnlegrahle or not.

Y + Now we shall list some basic |11'n'1-1crtics of definite inteprals.
) - Totegeal of n constanl function -[{x) = ¢
b
fcdx = ¢{b—n) |
H]
5 This is intuitively chvious since the area yepresented by the integral is
simply a yeclangle with base b—a and height . 7see Fig {0,
Now ie1 us consider a function [ which i miegrable over [a, b).-
Fig. 10
g N Constand Multiple Propeviy
i |_I'
[ wexyax = k] 1x) ax.
i il
IiI Interval Uninn Property
b - I
Il a<e<b, then II(:-:) dx = Jf{x) dx + _[l(:() dx
H i <
s geometrical interpretation is shown in Fig. t1(n).
! Y -
Y K :
d
i
j
i : ¢
O c h }{;' 0 X"b-
:
[HY] I} .
Fip 11

16

IV o arisan YProperty . . .
I e e constants sueh (hat ¢ o () = d den all x om0 Jalb]. then

[
Iy

e{b—a) : r-I'(_-Ir dis = d{bh—n)




Fig. 11(b) ni'akcslthis stntcment clearer, Node that ¢ and g arc not necessarily the Dedinlie Integra
minimum and maximum valués of [(x) on [a.b]. ¢ may be less than the minimum, ’
and d may be greater than the maximum.

The following thearem given a eriterion for a function to be integrable.

" Theorem 3 A bounded function { is inlegrable over [n:lr_] if and only if, for cvery
e > 0, there exists o partition P of. [u,b] such thay 0 = Uk ~ 1P < r.

Praof : We know that for any partition Peof {ab], )
LEH = [ i) dx =[x dx = gy S , n
. T ' a . ,
' v > A . P e
. %_0 IE j-. f(x) dx — J:‘ f(x)-dx = U(P'r) — L(P‘r)_ [.{P.1) f\ I-!: Le.n

-1f the function f has the property that for-every e > 0 there exisls a partition
P of [a,b] sueh that - B

UP,f) — L(P.) < €. we conclude that
b N
f(x)?dx - L f(x) dx < ¢ for every ¢ > 0.

0=

g

. T iy .
_From this it follows that j {(x) dx —~ fn [(x)dx = O and hence | s integrable over
[a,b]. _ . . -
On the-other hand, if f'is integrable over [a,b],
b _ . .
f: f(x) dx = sup {L(P,f}: P € P} = inf {UP.f) : P e P). Thus, for every & > 0

we can'find pavitions P’ and P of [a.b]. such that-
. .

0 | 1(x) dx < L( () <&/, and 0= U(PA0) ~ [ 1 (x) dx < 2 (see See. 2 of

Untt 1).

'I"aking some partition P which is finer than both P’ and P, and adding the (wo
inequalities, we have

0 =.U(Pf) — LIP,H < c.

This completes the proof..

Now ariscs a natural question : Which are the functions which satisfy the nbove
eriterion? The following- theorems provide AN answer.,

Theorem 4 A function that is monotonic (increasing or decreasing) on [a,b).
s integrable over [a,b.

Mool _Lét the function £[a,b] — R be increasing. Then
< xg = Ix) S f(x,).

*or each positive intgger n, lal Pyo={a, a+h ... yictnh = b}, where b= JE--71'--- bseran
cgular partition of [a,b]. - Then "

[(a-kii)

i
i=t - =T h

L, ] .
PWD = 5 M Ax; = SM:h =1 S M, = bz
i=1

ipede

ince the supremum of f(x) in fa+(=1) b, aqa-in) s [{a+ih).

nd L(P,,0} = h i:}_"‘( m; = b;“ ; r(=|+(i;i)|1)

IRE-

P b
i,
-
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Integral Caleplus
P

(b=} [F(b) I (a})

Let e > 0. Can we

U(Pnlr) - L(pmr)

|
o b—a. . . [
, - n - l‘(a}
: Ty
L
;-
[
! L ]
i
T
L
II'
g
1,
{-.
b
1N,
[t .
b e o 3 - -—

Therefore. ‘ ‘
Ui - L0 2 L (i) 4 {a+20) + .. + Harnh)
‘ =f(a) = ((a+h) ... fat(n=1)h)}
<=8 fadan) - o))
e —‘-’-Jl-(rua) = K.

choose an . \(Im:h will make U(P,.00 = L(P,.0} <& ?
{b—a) [f(h) ()]

Yes, we can. Try some n > . If we subslitute this value of -n

in (1], we get _
: e {b—a) [I{b) = i(a}]
(=) [E(L) - 1(a)]

--~Thus; applying Theorem 3, we can canclude that 1 is integrable.

Theorem 4 leads s to the fullowmg uselul resull..

-Coroll.u'y 1 lf fis mcrc‘mn;, or decreusing on [a.b]. then

1] N .

J ) dx = lim W[f(a) + f(a+h) 4 ... + [ (nes 1 )]
*yeal) R
= lim hif{a-+h) -+ !'[.w?h} + 4 {(< nh)]. where h = —bfl—"--
h—40 ' -

We shall ilustrate the uscl‘ulnc«.u af Corollary'] throuah some examples. Bul belore
that we state dnbther theovem,"which identifies ane more class of 1n1cg| able
funclions. - . - .
Theorem 5 1) o [unclinh [a.b] .~ R is coptinwous, theh {is integrable.

The proof of this lhcon_m is beyond e scope af this caurse, We shall prove it in
a later course on real: qllhlL}‘.!'\ )

In Sec. 5 in Unit 3, we have scen that d[fﬁ:lcnn ibility implies cnnlmmh Now we
can wrile

cllffcrcnlmblhly =2 continuily =i intearihility

 Now, lLl us evalitate some definite inteprals with 1he help of (oro'll wy 1.

I

Example 5 To cviluate Jrcosx de. -0 b w20 we nbserve that

[x —-cosx is adeereasing-function on {ah), Therefore, by Corollary

h
1

Jcnsx dx = lim Ifcos(a-k ) + cosfa-2h) + ... + cosfatnh}], a-knh = b
1l T .

Now .
2 §in (W2) [cos(a+) cos(a+2h} A ... + cos(a-rnh))

= 2sin (b/2) cos(a4-h) 4 2sin (W/2) cos (a-2h} -+ + 25in(1/2) cos (a+nh).

= |q1n (l-— .:! ) = qm {4+ «—-)] -|.~.in{:l - -_'q-‘}L]‘ - sin (p+ J.P—]] + ... 4

._2.‘_‘,.._. ) )

|sin {a- F(—'-'—'LLL) h) - sin(a (

= sin (a4 (-—"—llj-]—] h) -- sin (- ’;1

i R
s {o - —_}: Josinee a 4ol - b
sy flvii )

Josiaonhy - TS

= sin (b -5— 1 -

Py

of oy NERN
2o pesfadhy b oconin 4 2hy

sin W7

Thux,

I-
i . it AN
l cosk dx = lnu |s|n bz ) s (05 o 1] e
: N - 2 M sin (i
225 by - Nin o, ’

= T




ﬁxn'mplc 6 Suﬁpq'sc we-want (o evaluaic I (x+x%) ax
: 1

Here, fvx — %+ x%_is ap increasing function on [1,2].

Thcrgfore, I . L

co

'[-(xir:&) dx = ;in}, h E'ru +ih), h = 1

e '—ltmh2[1+m)+(1+1h)]

h=0 ial

. = lun h E (2 + 3hi + h* |2)

Lo =0 111

= Ilm [2h E 14 3n E i+ 1S
. =] =] Jury

= tim {2nh+ g Wn(n+1) + L h'a(n+1) 2n+ )]
=0

= Li_% 2+ —%—.(1 +h) +-% (1+h) (2+h))]. since nh

= 23

In this section we have noted that a continuous function is integrable. We have also
proved that a monotone function is integrable. Corollary 1 gives us a method af
finding the intcgral of a monotone [unction, One condition which is very essential
for the integrability of a function in un interval, is its boundness in that “interval. 10

a function is unbounded, it cannot be integrable. In fact, if a function is not
bounded, we- cannot talk of M, or m;, apd thus cannot form the upper eor lower
pradict sums. Now on the basis of the crileria discusséd in this section you shoiild

be able o solve this cxoreise,

£10) State whether or not ¢nch of the followtng functions is integrable in the gwcn

interval. Give rcasons for cach itnswer.
a) [(x) = x? = 2x + 2 in [-1,5]

b) f(x) =Vxin [l,a] -

c) f(x) = Iix in'[—1,1]

d) f(x) = [\] in [0,4]

e) f(x) = jx~1} in.[0,3]

f) f(x) -%‘—i’—ll in [~4,0]

. _{x+1whcnx<0 iﬁ[”lll
g (x)‘_ 1 =~ x when x = 0, .
X+ 1 when x <1
N k 0.3 .
hJ f(?s) l2x +lwhenx =1, 0 [ ]

- n
Wi=
P

Trefinite lufegeal

Reeall thas
1]

E 1mp

i~

nin+1}
a

il

L Y TR SRR B
’ = -




Inlegrat Calculus

E

Elt) Use Corollary | (o evaluate the following definite mntearsl .

[ (1) s

0

10.4  FUNDAMENTAL THEOREM OF CALCULLYS

As you lave abready read in the introduciion, the basic coneepts al deliniwe
intepril were used by (he ancient Grécehs, nuiniy Archimedes (287-212 3.C.). ore
than 2000 years ago. This was long belore caleulus was invented. Bul in the
seventeenth eenlury Newiton and [Leibniz developed o procedine for evahaiting o
definite integral by anticlifferentiation, Uhis procedire is cmbodied in the
Findinmental Theorem of Calenlus (11 e,

Defore we state this thearem, we latroduce the notions of the averinse vilo s ol
function and the antiderivative ol a funclion. )

Delimition 5 14 F he inteprable ever [a b e avepraze vabie o o AN

over fahj s '
I

e — 'rl":.‘ (x

. h-a -.’. ()

L
Vlhie Tollowing theorem 1ells us tha every vanlinuows funcion v i closed nergd
WL ity averape value ol some poine o the ivterval, We shall not puve it pron

here.

Theorem 6 {Average Vilue Theoreny I 1 - b R comiinnons, e

fl:-_‘) = I;!-"l- j“.\'] tx

Cfor samie, ¥ e falb).

We shall nose deline Hes antideriyarive ol o funeling

efinigion 6 Lot L fabl -0 I oand - Bid - o8 e pwens it sy 1l
U () - Driag = Havior et 4 Lobl W b o e amsnerib a0 tor
dx

imvere deriveiive of [N,

Forexample. Y i antiderivitive ol a ' sjnee RS B
A 11 -~
= YOS Xy anliderivative of sin ST r' L e x) - amox.
= » . . . B bt
Is "}"i SN anbdderivative ol s M

Consider the tey Tinctons 1(8) 8 el fix) o on U Hotiv thewe e

imtideyivirives 0! the fensoon s Sy i means thod oo alise ol g




,' {unction is ot uniqu_c. In fact, if F(x) is an antiderivative of (), then F(x) + ¢
is also an antiderivative of f(x). This follows from the fact that
d = RO s

a5 (F09) = S (R ve)=itw).

© We can also say. that any two antiderivatives of o function differ only by a constant,
Beeause, if F(x) and G(x)  are two antiderivatives of f(x), then

CLP(X) = GHx) = f{x}. Thatis, [F(x) - Gx)]* = 0.

We have noteq in Unil 7 that il the derivative of a funclion is zero on ant interval, then that
function-must be a constant."Fhus (F(x) - G(x) = c.

Now having defined the average value and the amiderivative, we are in a posilion
to state the Fundamental Theorem of, Czlculus. We shall give this theorem in two
parts. . : '
Theorem 7 (ETC): Letf:[n,b) » R bea continuous -function.

- Part 1 If the function F [a,b])— R is defined by -

F=[ga, o . C3)

then F is an antiderivative of f, fhat is, F'(x) = £(x) for ult x in ],b[.

Part 2 If G is an-aniiderivative of { in Ja.b], then

. b : b
[ ) dx = G(x) ] = G(b) ~ G(u).
Proof of Par¢ 1, |

By the definition of derivative, F'(x) = Ilim Flx-+h) ~ F(x)

i— 0 h
¥ x1h 4
= m‘l!f‘.[! Ht)dt — j:r(:) dt]
xi-h
— T I 1
- !IT?E-H! r([) .,

"by the interval union property of delinite integrals.
But, by the Averape Value Theorem (Thicorem 6) -
x+h

—};—f f(1). dt = £(t) for some T ¢ Ix,; x4-b).
. F :

Therefore, F'(x).= .m i(1). 'Wc know that T € [x.+1}. This means that as
h— 0, T— x. Therefore, ’

F'(x) = lim £(t) = {{x), since [ is a continuous firuction.

Hence, F);s defined by (3}, is an antiderivative of I,

Proof of Part 2

G is given ns an antiderivative of § in kbl Alse. as shown in Part |, F defined
by (3) is an antlderivative of T in fubl Therelose,
G(x) = F(x) + ¢ on lab] for some constant c,

To evaluate e, we substitute ¥ — o, and olbiain

¢ =G(a) - F(a) = G(a) - 0 = G().

Hence G(x) = F(x) + G(n). or
F(x) = G(x) — G(a)

bl i"'c_'Ppl x = b, we Eet

- F(b) =fr(x) dx = G(b) — G(a)

Deliniie leageprap

‘The intenval [i, b| on which [
and s antelnvative ane
delined, sothi 1 (x) = ((x)
Vxa Ja b, is implicit i aur
dliscussion here,

Iy - J [{eh =0
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Integeul Caleulus

Y

| J G' (1) dt = G() - G() .

The Fundamental Theorem of Cajeuhus tefls us that dilferentiation and integration
are inverse processes, because Parl 1 may be rewritien as

s (l_f(l) d) = f(x}, if [ is continuous. _ -

“That is, if we first integrate the conlinuous function  with the variable x as the

upper limit of-integration and then dilferentiale with respeet (o %, the result is the

function T agnin. So differentiation offsets 1he effect of integradon,

On the other hand, if we assume that G’ is'continuous, then Part 2 of ETC may be
written as

Here we cap say that if we first differentiate the-funiction G and then integrate the -
result from ot x, the result can differ from the origindl function G(x) only by the
constant G(a). TG is so chosen that G(a) = 0, then integration ol'l‘fqls the effect .
of differentiation. *

Till now we had evaluated the integrals of some funclions by first linding the lower
and upper sums, and then taking theiy supremum and infimum, respectively, This is

# tedious procedure and we cannot apply it easily to all funclions. Buat ‘now, FI'C

gives us an easy methad ol evaisating delinite inteprals, We shall illustraie ihis
through some examples,

PR . Kl

Exumple 7 Suppose we wint 10 evithiie ,'(:n_x:-l-hlx+c} ux.

.
. . 1] . . > - i -
Since [ :x— ax? + by + ¢ is cominuous on [2.3], 1t is integrable over [2.3],

ax? 2 R
G{x) = J‘—B:— + hT\ + ox is an antiderivative of ().

I‘\ll:llt.‘l). by FTC (Parl 2) ,

1

J{nx: + bx 4 s = (‘:(x}]

h]

G(3) ~ G(2)
(Y 4 I - 3¢} = (Badd o4 ZhoF 2

I

It

= |lJ-"_{l +5-L:— + ¢

i

Example R {01 ux evaluale {cm‘l{ dx

T 1,
. oL
- sin2x
COS2X LN = =g

" - "

! _ sindni?) sinl)
=
=L

2

o
\

o ¢l . -
Example ¥ Taevaluale —- Jsml di, we put 8 =

s 4,
Then
\: 1]
d 7. d o7
— Jsindt = — ! LT
tx ila -

n ]

il {I'I . ©du
= () sinpsli) =
oy

)

Now 48 o oy
dx
1) x,

il using FTC {(Fael 1) we sl

-

d £ . L , o
""" [ st s osinu o sinos L This HH T RTINS
iz, dv oy

v




'E:xa_mple 9 suggests the following formuld: = " - -~ -

alx)

3‘.} (i H(1)dt) = £(200)g'(x).

If you have followed these examples, you should be able-to solve the exercises
below. Remember that the main thing in evaluating a definite integral is to find an
_antiderivative of the givep function. . .

E E12)- The second column in the table below consists of some functions which arc .
antiderivatives of .the functions given in column’.1. Match a funcuon with its

* antiderivative by pairing appropriate numbers.

For example, we can match x" with :+1 since ﬁr_':ll isan a:_niderivalivc of'x“'
We shall indicate this by iii) — viii).
. Furlctlonl _ Antiderivative

i) sinx i} —Incosx

if) cosk -ii) "lncoshx

i) x™ iii) sechx - |

iv) e iv¥) —cosx

v) tanx ' v)  sinx

vi) a viy Lew

vii) tarhx vii}) ax

viii) sechx tanhx viii) Sl

i

a)

c).

g)

i)

E E13) Evaluate the following integrals by using FTC.
. 4.

)
I 2x*dx
1
2

Jx{;+l)3dx

k]

jx(xi+'I)3 dx

Al

=

. -{:-: — cosx} dx

sinh x cosh x dx

e

1
b) f(:'x3+2x'+|)¢|x
) I see? x dx
u
&2
f) J’ (x+sinx)dx

oL

J

i | csinh xes cosi x) dx -

Erefinlie Foncpenl
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£ El4) Find iddx- [F(x)) when F(x) is defined by the following definite integrals.

a)_'f\f1+'tz dt
¢) f(t’-—ZH:l)dt
u]

-]

x2 ’
€) 'J‘I\IXI-—F dt
LT

. x7 -
. 'b) 'f\/sim + cos( di
o .

x?

d). | cast® dt
/

10.5 SUMMARY

in this unit we hive covered the lollowing poinls:

1) A partition P of 1 closel interval [a,b] isaset fa =5, 5, %0 x, o X
such thitxy < x; < x, <

: Definire hitepral

s




1n_,lt:rlJ(“Tnlquu-!. 2)_ A parlition P, of fa,b] is finer thar a partition Py, If Py 2 P,.
3) 'I£.M and. m ure the supremum and the infimum of.a bounded function fin [a,b],
- then, glven any purtluon P of [a,b], m(b=n) = L (P.D.= U.(P, = M(b- n).
4) The'lower intcgml of a bounded function Is less. than or equal to its upper integra,.
"5) A bounded function fis integrable over [a,b] If and only if its lower and upper
integrals are equal. In such a situation the lower (ot upper) integral is called the
h

dcfiniteimcgrui-offovcr [a,b). denoted byf f (x) dx.

6) If [ is manotonic or continuous on [o.b), then [is :nlcgrablc over [a,b].
b

7 Itfls contlftuous on {r,b], then _[f(x):dx represents the slgned area of the
region bounded by the curve y = f(x), the x-axis and the linesx =pandx=b

8) If f Is monotonic on {a,b], thcﬁ
b

,ft'(x)dx = Eﬂ'h it‘(n +1ih), = II m h El’(u + (i—-Dh),
a lu | |
whete b = -bﬁﬂ-

9 'I‘hle Fundnmental Théorem of Culculus:
i) Iftis cbntinUOus on [u4,b], then for x € Ja,b

——dqum)=ﬁﬂ
0y 1F g Is continuous on [8,b] and F'(x) = f(x) for x € ]a, b[ then
- _

fmm-nm—m)

10.6 SOLUTICNS AND ANSWERS

E1) P, P N P, are régular.
A xy=1/4in P\, Axy = 1/6in Py,

E2) u) (0,3,3.113: 12,2
b).(2, 24, 9% 44k 4 51, 6l 6273 8 8 )
3.1+b a+h u+3b

E3) o Pa={(y g bl
Ps-n-[a. 7u8+b.3n4+ b.su;%,....b} .
§ &xin Py is b=y :
i : ' B Ax (n Py Is-—-s——. _
e " E4) n“."' Py U P =5 p? CP"'” => P?,, Is u refinement of P} % n.
E 8} a) f(x) iy an '""c:‘s:ng function on [0,2]. Hoaee
LPD = 1'-..174-;_";.3{.... e
- _-nndU(I’,rj=_-3.._é+2._21_.+_141._%..‘|.5..%

b) [{x) is & decreasing function on [l A, THence

LD = 41+ g b
St % ‘ U(Pr)—t1+J.-1+
| EO L0 =2 Ly]




y=1..1 i U R -
UBLO=3'3%5 2 2
=4 31,2 1,4 1,1 1
W) =g g+ 57+ a+3 3
~ 2289
5940
' n=l1l.14,4 1,2 1, 4 1
Ul =3 g*o %t s 2717
J 1601
3960 -
'L(P,.f) = L(Pz, H= U(Pg. 0= U(Pl, f).
ED If P= {xn. ceenenXp) iS°D pnrt[hon of {0 1},
LD =U(PD) = I mAx/ = EZ&x; 'me; =20 =2
I-It:.nccfr f(x) d [f(x) "2'.
ES) [fP = {a --x... X). x,, = b} iy any pnrnllon of [.1 1),

" then L(P f} = Zm¢ Axy=s T my Axpy = L(P.p).
wherq m; ¢ = inf {{(x) : x € [x,.,, ]} and
iy = i {g0) X € g, xi)
and m; ¢ = my, since f(x) = g(x) for all x.
Similarly, U(P.f) = U(P.g) for all P,
The result follows,
E9) f(’x__) = 2 is integrable
E-Iﬁ) a'). b):. e) and g} are integrable as (hc's.c are continuous,
c), f} are not integrable as they arc not bounded.
“d). h) qrc’intcgrahlc as these are increasing functions.
2 - _

Ein) [(+gde=limhi2 42+ 5+

-
h""—['i"4'2+"ﬁ'

. o=l = d
+ ... +2+ =4

n-

l|m~—[2n+ 1 (I+2+ ... + n-1}}

I'I—o||

Il
=2
~
+
. E‘-.
B e
=
[ %]
+

iii)
iv) v
v) 1}

b

vi) o L vii)
—
—3

vii)

vii) i)
viii) i)

L i3) a) 5— is an antiderivative of 2x".

f2x e =
A ‘

2x
l 2 =
))[(_\: +2x+]}(lx 3 9 %"+ xI

[Tenew -

>

g
- T

I\JI

18+9+3—("+ [+ 1) =

e} 5% )if.%.‘ N o. 'g)‘

rwI=.'.. wv—

d) |,

" Iefinlle Intcgral
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UNIT 11 METHODS OF INTEGRATEON

'Structure _ _

11.1 " Imtroduction ' ' 29
Objectives .

11,2° Basle Delinitions 79
-Stnndnrd liograls .
Algebrn of Inwcgrals .

11.3 "Integration by Substjtution = - : 35

Method ol Subclilution
In lcgrnls using Friganomieiric TFormulas

Trigonometric and Hyperbalic Substitutions .
Two Properties of- Definite Tntegrnls
114 Iniegration by Parts 49
" Integrol of o Product of Two Fuhctioss '

L

Evi:.iuullnnol’fc“‘ sinbx dx and [ cosby de
Evnlu:ﬁahaff,fu‘-—xz dx, J‘\) a2 4% dx, andl j Jxi-a® oy

Inlegrals of the Type J’c‘[f(x) + (%)) dx I

1.5 Summary . : i "
- 11.6  Solutions and Answers : ol

11.1 . INTRODUCTION

I
Inihe last unit we have seen that the definite integral I [(x) dx represents the signed

i}
oren bounded by the curve y = {(x), the x-axis and the lines x =a und % = b, e
Fundamental Theoren of Caleulus gives us an easy way of cvaluating such wn integral,
by first finding the antiderivative of the given function, whienever it exists. Starling from
this unit, we shall study vavious methads and (eéhaiques of inlegradion. In this unit, we

shall consider two main methods: the method of substitution and the method of
integration by parts. " The next Lwo units will cover some speciad inteerals, which can be
evaluated using these two methods.

Objeclives °

Adter reading this unit you should be able 10

e (lefine the indefinile integral of a funclion

& cvaluate certain standard integrals by finding the untiderivatives of ihie bategrands
& use ilie rufes of the aigebnn of infeErais (o evaimne some integraiy

o pse the method of substitution 1o simplify and evaluate certain imegaals

% integrale by parts i product of two fuuctions.

11.2 BASIC DEFINITIONS

We have seen in Unit 10, that the antidecivalive of a fanction is nal voigue. More
precisely, we have seen that if n funciion Fis an antiderivative of a function T, then F +c¢
is also an antiderivative of f, where ¢ is any arhitrary constant. Now we shall introduce

AT

29




-

Integral Caleutus

g

ounlyonf,

anotation here: We shali use the symbaol f [{x) dx to denate the class of all
antiderivatives-of f. We eall it the jndefinkte integral or just the integral of f."You must

have noticed that we use the same sign f here that we have used for defipite integrals -
in Unit 10. Thus, if F(x) is an antiderivative of f(x), then we can writc

[ty dx = Fex) + .
This c is catled the constant ol integrattion. As in the case of definite integrals, (x) is

called the intograrid and dx indicates that [(x) is intcgrated with respect to the variable
¥ For examiple, In the equation '

_ {av+b)* _

j(n_v+b)" dv T T,

Co . . . . av-h)s .
(av+Db)* istheintegrand, vis rhcvanablcol‘mlcgrntmn.and Q—-Sﬂ—bl_ +c isthe
imtegral of the integrand (av+b)!

You will also agree that the indefinite integral of cosx is sinx + ¢, since we know that

sinx fs an antiderivative of cosx, Stnilarly, the indefinite integral of ¢ s

.
fcz‘ dx -*?l &% 4 ¢, and the indefinite integralof x" + 1 isf(x":l-l)dx = XT +x+c
N v
h

You have seen in Unit 10 that the definjte inlegrnl[ f(x)dxisa uniquely defined .
B

real number whose vatue depends on-a, b and the funciion f,

On the other hand, the indefinilc integral j f(x) dx is a cluss of funetions which

differ from'one anoticr by constants. It is not a definite number; itisnot even a definite-
function. We say that the indefinite integral is unigue upto an arbitrary constant.

Unlike the definite integral which depends on a, band f, the indefinite integral depends

. I
Althe symbolsin the notntion f f(x) dx for the definite integral have an interpretation.

The symbol j reminds us of summation, a and by give the lintits for x for the summation.

f(x) dx shows that we are not considering the sum of just the function values, ratherwe
are congidering the sum of function values multiplied by small increments in the value
ol x. '

In the case of an indefinite integral, however, the nnr:llionf I(x) dx lias no similar

interpretation. The inspiration for this notation comes fram the Fundamental Theorem
of Caleulus. .

Thus, having defined an indefinite integral, iet us get acquainted with the various
techniques for evaluating integrals.

.11.2.1 Standard Integrals

Integratjon would ha o fairly eimals maticr i we hind o st of integraf formulas, or a
iable of integrals, in which we could locate any integeal that we ever needed 1o cvaluae,

" But the diversily of integrals that we encounterin prictice, makes it impossible (o have

such a table. Onc way 1o overcome this problem is {o have a short 1able of inteprals of
elementary functions, and learn (he techniques by which the range of applicability of,
thisshort (able ean he extended. Aceordinply, we build upatable (Table 1) of standard -
typesof integral formulas by inverting formulas for derfvatives, which'yfutf have niready
studied in Black [, Check the validily of cach entry in Table 1, Iyy verifying that the
derivative of any integral is the given corresponding [unction.

e




- Now Ict us sce how to evaluate'some functions which are lincar combinations of the

functions listed in Table 1.

11.2.2 Algebra of Integrals
3You are familiar with the rule for differentiation which says
5 [afe) + byl ] = a (1001 + b [2(0)

There is a similar rule for integration :”

Rule 1 I[nf(x) + bg(x)]dx = a Jf(x)dx +b Jg(x)clx
This rule follows from the following fwo theorems.
Theorem 1 §{fis an integrable function, then sa is ki(x) and

ka(x)dx = klfl‘(x)d,\'

Prool’ Let fr(x)dx = F(x} -+ c,
Then by Llcfinilinn.(:—’x [F(x)--¢] = 1(x)

A

Todx

[K{F(x) + c}] = ki(x)

Again, by definilion, we have

[ ki(xyds = KIFE)+ ] = & [ foxyels

Table §
8. No. Function Integral
1. xn 'xrh'-l ®
- oy +e.n# -1
3. sinx —cosx +¢
T3 cOsx sinx + ¢
4. seex tanx + ¢
5. cosec?x —COIX + ¢
&. ~secx tanx §CCX +.C
7. COsCe X cotx —Coseex + ¢
'B. ! = sin"'x +e¢, or
: J1=x —cosx + ¢
. , .
9, s 1—-]——2- tn™'x +¢ or
L IEx —eot™'¢ + ¢
10. S see'x+¢ oor
: x VxI-1 —col x+¢
11, : —i Inlkj+ec
L
. 12. c* e+
x ax
13. a ) m + L
- 14, sinhx coshx +¢
15.. coshx sinhx +¢
16. sech? tanhs +¢
17. - cosech® —cothx +¢
18. sechx tanhx —sechx+¢
19. cosechx cothx —cosechx 4-¢

1
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Theorem 3 I Lind gare two integrable [unctions, then i+gisintegfable, and we have

f[l'(x) b () Jeln = f i{(x)dx + jg(x)tlx

Piool It _f f(x)dx = F(x) + ¢, fg(x)dx =Gx)+c
Tien, _
T TEG) + b 4 (G ) + o] = K(x) + glx)

'I”hns.f,'l’(.\.') 3 () dx == [IF(x) 4 ] + [Gx) -i--c]

=[x + [ atnd

Rule (1} may be extended to include g finire nuinber of functions, that is, we can wrile

Rutte 2 [ [Kafi(6) 4+ kgfal6) + 2o, + Kif(n) ] o
= Iry f M(x)lx f_l.'gfrz(:«:)dx F o, + k,,Jr fu(x)elx

We ean make use of Rule (2) 1o evaluate certain integrals which are not listed in Table L.
Exnmple!. Letus cvulu.'llcf(x -+ %]"‘ dx

Weknow L (x - -]T)'-‘ =k Ay 4 2 g Therelore,

- X X x:"

f(x + -'\[7)'1 dx -—-_f (x% - 3%+ -3— + —xl_:‘)dx

=xMdx - 3 fx:lx '-1-3fi!_i - fﬁ- ..........
J S x3

Rule 2

Using integral formulas 1 and 11 from Table |, we have
o 2 ' .3
[(x +- -}c-)"dxz (-54—- + C|) 4-3(’\? + c?_) A+ 3{Inix{ + ¢,) + (f_—z + c,)

S 2 33 ke e e e s
--'-:i- ""-2-‘\ 43 IIH;KI 2?{2 f (C| | :'ILZ |"3(.:| +c_|)

A3 g
X'+t5x+3 Inlx| - ~1= 4 ¢
25 i 2x°

Nole that ¢; + 3¢, I Jea 4 ¢y has been repliced by a single arbitrary constant .

Exumple 2 Suppose we wint to evaluate f (2 + 3sinx H- 4%y dx
This integral enn be written ns

chh; + .‘ifsinx dx + 4]1:" dx

= 2% — 3casx + 46" + ¢

Nole (irat jdx = _[.l(l.\' = fx"dx =x+c
1

' . =2 - e
Cxumapled 'I'm'.\-'nlnnictlzurluf'inilcmlcgr;al[{x - 2% dx, we firet find the indefinite
1

integral _f{x + 2372 dx.,
Thus, f(.\' -l 2:;1)1 iy = f(x: A+ odxt A dx -
= _[.\:Ed.a: + clf:::"clx + df.\'" dx

w LA d s
= 3}. f-:\ f‘s.\ I-C

132 =+H

-y




E

Accordmg to our definition of indefinite intcgrat, Lhis pives an anliderivative of Methadsof Intepratian
" (x+2x2)*for a given value of ¢. By using the Fundamental Theorem of Culeulus we ean

now cvaluntc the definite integral. FTC savs that if G (k) is an
| ' anticlerivative af [{x), then
I(x +2x%) dx = ( .'Ii Ll —g- x5+ c)] , ff () dx GRS
0, ’ . =G - G {r).
=(x+1+2 4)we=32 :
( 5 +c)—e¢ 35

)
Note that for the purposc of cvaluating a definite inicgral, we could rake the
antiderivative corresponding to ¢ = 0, that is, :

-% x3-+ x4 -g—- xs. as thic constant cancels oul, , . .

Sec il you can do these excreises now.

Ei) Write down the integrals of the following using Table Tand Ruie 2.
a) () ¥ @ i) W) 3
by (@) L~2x 4 (i) (- L) (i) (1+ x)*

¢) (i) e e +d (ii) densy — ".*.inx +e¥ 4 X (iv) 4sech?™ 4 ¢* — 8x
2 .S 2x

d) (I) ‘/—-]—TI; o+ T {Il)
. : " 1 .2

e) (i) ax®+bx¥+ex+d (i) (f————}

) *

) () sinfx + Cos™ (i) (@4x)(3— /X )

SIN7X CO5™X

L Y

13
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E E2) Evoluate the following definilc e grals,

a) (i) fx-"clx D) f-'-;-'; dx
h] 1

q .
1) (i) J‘(x'\'"Tl,):"dx (ii} :[(x + 13 dx

n

e

You lve seen that with the helpof Rule 2we could evaluale a number ol in legrals Bur

still there are certain inlegrils like jsian dx which cannot be evaluated by using

© Ruie 2. The method of substitution which we are going lo describe in the next section

Wl“ come in Il.mdy in these cases.




11.3 INTEGRATION BY SUBSTITUTION | et

In this section we shall.study l:hc first of the main meihads of integration denlt with o ) .
this unit: the method of substitution, This is one of the most commonly used techniques
of integration. 'We shall lllustrate its t\pp[lc'mon through a number of eximples.

11,3.1 Method of Substitution
The following theorem will lead us to this mcl‘hod

Theorem 3 If ff(‘v)dv = F(v) +.¢, then on -;ubsulmmg v l:y g(x) we gcl . o
Jae e (x) dx = [svya.

Proof Weshall make use of the chain rulc for derivatives (Unit 1) to prove lhm _
thearem. Since ft'(v)dv F(v) + ¢, we canwrile -——-ig-)— = (v}, Now va.c wrilcvas a : ’
function of x, say v= g(x) then
_ dFlg(¥] = delx} a0
F[g( )] 3809 ax by chain rule
‘= flg(x)]" ﬂg{—x— since v = g(x)
. =fMg()- ¢ (x)
“his shows llml: F[g{x)] is-an nntulcrwnlwc of fg()e'(x). This means thal

e(9]e'(x) dx = Flg()] + ¢ = F(0) + ¢ = [f(v)dv. /

“he'statement of this theorem by itsell mily not seem very useful to you. But it does

implify our task of evafunting |nu.3mh Far example, to evalintie J-.m..x tx. we umld
uke v = p(x) = 2x und get

gin2xdx = % f sin2x (2) c‘Ix

= % fsim" dv by Theorem 3, since g(x) = 2x and £ (x) =2.

= —Ccosv , ..
5 + .
. cos2x

=5+
Ye make a special inention of the following three cases which follow from Theorem 3
ased) I E(v) =v", n# —landv=g(x), then, by Formula I of Table 1. ' ‘

. . (x) n+l

(80} g'(x) dx = [Lnjll_,4 ¢

aseii) Iff(v) = livand v = p(x).
1en, by Formula 11 of Table |

g'(x)

Ig(x) dx = In|g(x)] + ¢

ase fif) .lf[f(x)'dx = F(x) + c. then - - . , -
B b T .
R . ¢ ‘
flg(x)}e’(x)dx =J [(v) dv, where v = u(x) [The limits of infegeation e g(n) ind g(hy -
JUH)] N
R
=F{v)
gf:l]
Ree X = a4 ="> v = gx) =.g@), and -
X=b=5v=p) =gl )

fe shall be using these th ree cases very often. Tlcir usclulness is evident from the
lowing examples.

.t
N
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Example 4 L:ctusintegratc (2X + 1)(x*+x+ 1)*
For this we obsérv:c that i (S +x+1) = 2x+1

Thus, I(2x+l) (x2+ x--I) dx s of Ihc form I[g(x)]“ g'(x) dx and hence can be

_cvaluated as in i) abnvc

Tll'ct'cfnrc.f(2x+I)(x2+x+1)5dx (x +x+ l)

Altcrnn(wcly, to find I(zr +1) (w2+x+1} dx, we can substitute x2+x41 by u.

Thl'-‘. means

L=2x 41 ' ’
(Ix .

. Therelore, f(2x-l- 1) (ks 1) dx = -j u* du by Theorem 3

= ?'; u’ k¢ by Formla | from Table 1.

N B N e A
& (x¥D) ke
Txnmple § Let us evaluale [{ﬂ:\' + b)"dx.

I(ax + bY"dx = —;— f alax-b)" dx

= -'-]|— J‘ (ax-+Db)" d(_lx (ax+b) dx
Thercfore, whenn # —1,

Can e L (axtb)ett
I(ﬂX'l b) “(ix = m—- "'_‘C o. h

and whenn =14,

_ x f
f(ax+b)“dx = j.me = Injax+b| + ¢

Exnmpie 6 Suppose we want to evaluale the definite integral

2

J..i_’i dx
g X°+2x43 .
We put x24-2x+3 = u, 1Iu~.unplru ‘I" = 2(x+1). Further,

whenx =0, u =3, and when x'= 2. u= 11, Thus,

2 l 2 I 13 H
S W R Y i R N TN &
-.! X2 42541 %= ! oy X _ 23J 12 h_l[ul ]3

= —1— _ I =_1 lL
= (In11 —in3) > n

du

Example7 To cvalunlcfxcz’“’dx,v.'c substitute 2x” = u. Since = dx, we can wrile, |

',J‘xez"dx = %[ Pax dx = ] fc“ du g

[ T} _l n
c¢"du= 7 ¢ +c.

=i .1--'12..‘.
41- c

Qn Lhe basis of Lhe rules discussed in this section, you will he able to solve this exercisz.
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Now we shall use the method of substitution to integrate some trigonometric functions,
Let's start with sin ax. o i '

Example8 To cvaluate Isin ix dx, we proceed in thé same manner as we did for

jsin 2% dx. We make the substitution ax =u.

“This gives -g;c—' = a, Thus,.

fsin ax¢x = 1

. ~ -— S'
Jsm udu= _?,2,_" I ¢

'“%CDSEI.\L + ¢

k= E4) Procecding cxactly as in Example 8. fill up the blanks in the table below.

l?'.No. fi{x) : ff(x} dx
1. | sinax ‘ —-% cosax + ¢,
2, cosax -,]1— sinax + ¢
. 3 sec’ax :
A cosec?ax S -
) 5. seeaxtanax | ...
6. cosecaxeotax | ...
7. ™ verrenn
| 8, am [

L]

Exaimple 9 Suppose we want 1o evaluate

i) f_colx dx; i) flnm: dx and iii) fcoschx dx -

i)  Wecan write

cosy . d . . - . -
jcmxdx = J’-—" dx. Now, sincc < Sinx = cosx, thisintegral {allsin the category -

sInx

, of ease’ii) mentioned enrlier, and lhus.fcotx dx = In [sinx| +¢
) | | '
i) To-cvu]ua(cflanx dx, we write
: . seex tanx
- tan =f——--—-
j : :;dx S dx \

=1n{secy] + ¢, as 4

seex = secx tanx
dx

iif) Toinleprate cosc c2x we wrile

Ay 1 [ 2cosec2x{coscc2x—cot2x)
R LN i 44 L = -
JUOAECER X Ty COSCC2X — COlox

ITerc again; % (corice2x—col2x) = 2coscc2x(coscc2x—cotéx)

u, .
This mcans_jcoscc?x dx = % in Jcosce2x — cot2x| + ¢

In this example we bave used some ‘tricks’ to pul the inleprand inseme standard form. .~
P P

After you study various examples and iry o 4 number of exercises, you will be ablelo” -
Tdecide-onrthe patiiculsr substitution or the particular trick which will reduce the given
mtegrand (o onez ef the known forms. Let's look at the next cxampte now,

1 T T P




Muilods ol Inlegratlun

Example 10 Lei'u's evalum(: f 103 gindx dx
. Itwe  putsin®; = u, then -ﬂ-u- = 2sinx’ cosx = gin2x

'-Thercfore fe"“‘stxdx ‘='-' Ic du T
. - . e¥ +c_csmix+c

H'

Scc if you can solvc this excrcusc now.
. 'ES) Evnluqle lhc following integrals

a)‘-.fsecxdx' 'b) iféj'ﬁéx'bosx d« ¢ fc“‘""scczx:dx' .
.'-_. .___ ";._ . - .

-
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11.3.2 Integrals using Trigenometric Formulas

In this scction, we shail cv.lll.nlc integrals with the help of the icllowing tr:gonon]o wric

l'nrmulas

Kin?x e -'7 (1 = cos2x)

costy = 1 9 ' ‘ '

.COS"¥ —5(14005 2x) .
= = _1 _ l_ N

sin’y ; sinx 7 sin Ix

3, .3 X oaae 1y

cosX = y) cos X+ cos 3x

sinmx cosnx = —:12- [sin{m-+n)x + sin{m-—n)x]
COSMX COSNX = -%- [cos(m+n)x +-cos(m—n)x]-
sinmxsinnx = .:,12. [cos(m=n)x ~ cos(m+n)x]

In cach of thése formulas you will find thal on the left hand side we have either a power
of a trigonometric funclion or a product of two trigonometric functions. And on the

right hand side we hiave o sum (or difference) of tw.s trigonometric functions. You will.

realise that the Munctions on 1he right land side can'be easily integrated by making suitable’

substifuligns,

The following examples will iiustrate how we make use of the above formulas in
-evaluating certain inlegrals,

Example 11 To evaluate J-CO::J:I.X Ux. We wrile

A0 e | 3 T P v .
fcos ax dx= I(T cosax +_'J: cosdax) dx

_3 ) i .
= —4- J.Los.!x dx + T f cos3ax dx

=£— ax-{%-s.n.na ‘te . (sce E4))

: Exautple 12 Let us evaluale i) Isin.?ox cosdx dx and i} Isinx sin2x sin3x dx
Here theinteprand isin the form of a'produd of trigonometric functions.-We shall write

it as a sum of trigonometric funclions so that it can be integrated casily.
i) [sin3x cosdxdx = I% (sin7x = sinx) dx

D B 1 L
== fs.m'?x dx ~ -i-fsmx.dx

——]-’,— COsTX -i--— cosx + ¢

ii) To evalnate Jﬂinx sin2x sin3x dx, again we cxpress the product sin sin2x sin3x

a5 o sum-of lrigonomclric functions.

SINK sU2x sin3x = = sinx (cosx — cossa)

sinx cosx -—-—?1: Sinx cosox

2
1
2

= l‘ sin2y - ‘;‘ (sinfix ~ sindx)




'_Therct‘o;c, j sinx siﬂix sindx dx
R D | R .
= Tjstx dx + vy fsmd:, dx — —4-.'[ sinfx dx

= —= C0S2X — L cosdx + -21? cosbx + ¢

1
‘8 15

- Try to do some exercises now. You will be able to solve them either by applymg the

trigonometric formulas mentioned in the beginning of this scetion or by using the
method of substitution. Don't be scarcd by the number of integrals to be evaluated, The
more integrals you evaluate, the more skilled you will become. You have to practise g
lot to be able to decide on the best methad to be applicd for evaluating any given

integral.
E6) Evaluate ¢ach of the tollowing integrals. -
. ' 3
a) i) fsinsxcosxdx" i) JS95X ax iii) fcnl?x cosce?2x dx
sin’x :
b

mi2 .
iv), fsinZﬂ e™2dg ) f sin0(I +cos*t) do
. 1

P7A]

b) i) I(l-&-casﬁ)4 singdé i), IM_1
i n (]_slano).

iii) | sect tan0(1+scc0)* do
. ]

&) i) [sin®0d0 i) [sin30cos6
. T ok * Llr

jii) f cos50 cosd dD iv) fcnsﬂ cos20 ¢osd0 de
0 o

4]

Methods of lategratbon

L T

Iy
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E E?) Thecostofa teansislor radio is Rs. 700/-. Tts value is depreciating with lime

according to the formula ‘:’: = -ﬁ-%, where Rs.v is its value  years after its

purchase. What will be its vatue 3 years after its purchase? (Don t forget the.
constant of integration! Think how you can l'md it with the hclp of the given

information:)

'\]

11.3.3 I‘r:@.onumc\inc and Hyperbolic Substitufion
Varmuslrrgonnmclnu vt hyperbofic identities kike sin®0 4 cos?0 == ||

1+ 1an%0 =

sec’, h = "”'hU and so on, prove very usclul while evatluiting certiin

st Ll
integrals. In this scotion we .‘-h.l” see how,




A mgonometrlc or hypcrbohc subsmulmn is generally used to integrate expressions
mvolwng Ja —x*, Vx¢=a? ora® +x We 5uggc..st the following substitutions,

Substliutlan
X = asing

Expression luvolved
Vai-x?
Val+x?
Vxt-g?
al4x®-
“dx
uz—-_x

X = atanl or.asinho
x =asecl oracoshg.
X = tand-

' Thus. to evalualcf => put x,= usin6: Then we know that

= -acosB This'means we can write
acosh do

"A_
de
J v a*—a%in%

__f acos0 do
ucosl}

{xfa) +¢

fd0=0+c-' |

= gin™

Sin:nilnrly to cvalualcf 2‘_': T WE shall putx = atand
" a“+x

Since ﬂ = ascc’) d8, we get

dx =J' asec?0dd
HESLVCES w+al tano

- j asec?0d0 _
a T alseciy

fdﬁ

—I— tan~" (x/a) +

il

We canalso cv:ilualcj . by. Sllb\"(llllnb x= .’lldnﬁ

'R 2+x_

3

This gives -g—; -%'n_scczp

asec?l do

' “Thus, = = Jsecﬂdﬂ

S o attana
In [secO + tand| + ¢ -

Lo
I"l x + \/“.1 ?H. l+_c

ﬁ,{-

i}

it

“We can also evaluate this integral By putting x = asinh0. With (his substitution we gel

‘dx

.' : J .'|3+'x2 .

CII'II‘ va.."n\ = !::_

="sinh™(xfa) + ¢, and e know that
X+ /x2+q?
a .
Sln‘ularly
cosh™'(x/a) + ¢,

X + Jx*—a? 5

a0 +

i

\f .

= |n.

e (xfa) + ¢

:.mdf _’ =-—j]- 5C
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1 pry

1 X=0=p=xl=qp
Tandx = [== = 1.,

44

,Exlnmple 14 Thcinlcgr;m_d inJ- A
. - : [+x"

Let us put these resalls in the form of o table.

Table 3
S.No. | 1w fors) ax
1 .
] —_ - sin"(x/a)+-c
f a2y
"2 i —’1— tan'(x/a) + ¢
ia¥-1-X= ' '
3. L —,Il-'icc"'(m" 1)+ ¢

In | X2V x2+a?
n —.—.-....'1— +c
.

arsinh ™ (x/a) ke

orcosh™'(x/a) + ¢

Somgtimes (he integrand does not scem 1o fall in any of the types mentioned in Table
3, but it is possible to madify or rearrange it so that it conforms to onc or thcsc types
We shall illustrate this through some examples, :

2
EmmplclEI Suppnsc we want (o cV'lllmtcf o g
2x —x? —

Letus try to rearrange the terms in the inleprand ——L_— (0 suit us. You will sce that

o . = -
: dx_ _ f dx

L 2x—x2 S 1-(x=1)?

L — .= LL?— =
Twe put x—1 Yoy = L and
s I
Cdx dv

. Nole the new limits ol intepration.

J|’J’2x-—xl

Fhis integral is finally in the forn that we want and using the first formula in Table 3 weget

Q \‘{|—\.I"2

] 1
. sin"""-’ .
IV 2x—x? weln
- = cin-l -1 e T
= sin"' ] —sin n-.-g— [I—-T.

-

¢Ix dacs nol again
fall into the types mentioned in Tabte 3. But Jet's see what we can do.

1 wepitx* =1, %Ll = W Tl

i T
2 Ix?
f x,dx=~i-.r"‘ﬁdx
MRS 34 I
|
---l [_‘_l_? -(—ll-!-dx
30T

1
j__ il z i, by Theorem 3
I+

i u

il
ot

1
t




Here the integrand l-: 7 ¢an be evaluated using formula 2 in Table 3.
. v

Thus, we get

_ 1 mo_ = .7 - 4 R ' 1
._.-j.(_._ 4]

‘If you have followed this discussion, you will'certainly be able to solve Lhis exercise.

_EB) Integrate cach of the following with respect to the corresponding variables,

a1 e —_ oy 1
i) ——— i) ——— iii) - iv) --———
JI-¢ Ju=d [ +dy 25245
N .
x1—1 14416 Jd=u®
YT i 5)

I ]
—— x) :
Vv 2x—x? ARTTNE

S oxi) —-L_,- {Hint: x21 =1- —1-;
I4x° = [ -x-

|
Vy2ry§

Methuilsef Tnregratlon
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11.3.4 Two Propertics of Definite Integrals

We have alrendy derived some propertics of the definite integrals in Unit 1. These
arc the ‘ ' )

h

i) Constaut Function Property : chx = ¢(b—a)
]
Is

b
ii) Constant Multiple Property : fk () dx = kjf(x) dax

) h ¢ h
iii) IntervalUnion Property ' Iffx) dx = jf(x)dx + [r(x) dx

iv) Comparison Property Pife = f(x) = d ¥ xenb).

h .-
then, e(b—a) = J f(x)dx = d(b-a).

© Now we shall use the method of substitution to derive two more propertics to add to

this list. Let's consider them one by one.
w2

u a2
) Il‘(x) dx =jl'(x) dx + | f{{a—x) dx for any integrable function [,
0 4] 1]

We alréndy know that

a w2 ]
Jrwyax= fmwrax + [ 16x) ax.
1 1] Hipl

Now if we put x = n—y in the second intepral on the right hand side, then since

i = - .
ax 1, we get

“ i l.-:z a2

J [(x)dx = —jf{n—y] dy=J f(a—y)dy= [f(n—x) elx,
nix an [t u

gince X is o dummy variable,

A o HY A
Thus Jl’(x) dx = J M(x)dx + j Ma—x) dx,
{l n 1]

The usefulness of this property will be clear 1o you lrem the following example.




Methndsal Integrutinn

w . . 2w .
Example 15 Ectusevaluate i) fsin“x cos’xadx and i) [eos™vdx . -
' " [ . - . I
i}  Using property v), we can write
o w2 w2 .
: o 5 =y ] -
Ism"x cos’xdx = [sm 'x cos™x dx + Jsm (w—x)cos (X} Gx
a D i
w2 "3 . .
- 5 . sin (7 - x} = s K. and
= jsln X cas™ iy .[‘“'" 'x{—cosx)*dx : ms((”._ 0= vy -
n 0 ’
i7] ' il
=} sin'x cos®x dx — |-sin?x cos®x dx
0 - a .
=0
2 o " .
it) fcos“x dx = f cos™ dx + f cos* (2w —x) dlx
n 1] [}]
b "
= I cas™s dx + f ens™x dx con (2 =) = conx
1] 1]
_ :

2 [ cos’x dx

i
nil ' i
= 2{fcos‘1x dx - f cost{ar—x) x|
i Wil .
LA wi

= Zlfcm'"x dx — f cos'xdx | =0
1 1]

Our next property greatly simplifies some integrals whien the integrinds are even or odd
functi¢ns. '
vi) If fis an even funetion of x, then

[ ftxydy =2 f!‘(x} dx ‘ .
il R

=il
and if [ is an odd function, then,

'If(x}tlx = . - ;

This is'also obvious from Fig. 1(a) and (b

()
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In this section we have seen how the method of substitution cnables us tp substanrially Aethods af lutegrution
. increase ourlist of integrable fupctions. (Here by “integrable funclion™ we mean a
“Furiction which we can integrate!) We shall discuss another technique in the next

scction. '

'11.4 INTEGRATION BY PARTS

In this section we shall evolve i method for evaluating integrals of the type
ju(i:)v(x) dx, in which the integrand u{x)v(x) is the praduct of two functions. In other
. L] L

words, we shall first evolve the integral analogue of
| A '
L fu@via} = u(x) £ v00) + v() £ u(x) .
and then use that result 1o evaluate some standard intcgrals.
11.4.1 Integrals of a Product of Two Functions _
We can calculate the derivalive of the product of iwo functions hy the fnrmula
—d— . y = i ) = ; _*l
S e = 160 Lo v + v & u)
Let us rewritce this as

u(x) E‘%:’ v(x) = ﬁ‘{; [u(x)v()} = v(x) % u(x)

Integrating both the sides with respeel to X, we luve

1l

ju(x) % (v{x))dx &—tﬂl(x) 1269)) clev{’x) 'i% (u{x)) dx . ar

J‘u(x);% {(v(x))dx = u(x)v(x} ~ Iv(x) % (u(xﬂ dx ealeeeas (m

To express this in a morc symmetrical form, we replace u(x) by 1(x), and put

-(%-‘-' v(x). = g(x). This mc-ans vix) = Ig_(.\') dx.

As u result of this substitution, (1) takes the form

' f f(x) g(x) dx = f(x) f‘g(x) dx — f{r(x) f g(x) dx} dx

This formula may be rcad as

The integral of the product of two functions = First factor ¥ integrat of second factor
— integral of {derivative of lirst factor X integral of second factor)

It is called the fermula for integration by paris. This formula may appear a little
complicated 10 you. But the success of this method depends upon choosing the first

factor in such a way that the sceond term on the right-hand side mity be easy (o evaluate,
It is also cssential to choose the second Iactor such that it can be easily integrated.,

- The [ollowing examples will show you the wide viaricty of infegrals which can he
evaluated by this technique. You shoukl carcfully study our choice of first and second
functions in each example. You may also try to evaluate (he integrals by reversing (he
order of functions. This will make you realise why we liave chnsen these functions Hie
wiy we have.

Example 16 Let us use the method of integration by parts to evaluate f xetdx.

In the integrand xe™ we chaose x as the first (actor and ¢ as the sccond factor Thus,
we gel

i

jxc"d_x X jc"dx - j{ ?% {x) j u::*dx} d-x'

= x¢*t - fc‘ dx

KGL\':— e3¢ - - 49




' -
Istegrul Coleiln . e

Example 17 Toevalupte f K cosx dx, We shitll take x° as the first [actor and cosx as the

H . [{I N . L
second. Let us first cvaluate the correspanding indefinite integral,

f.\'zcnsx dx = 5""jcus.\' dx —j{ _(I% (x:]J cosxdy } dx

i

X" sinx — j 2xsiny dx

= x? ginx - ?.'J xsinx dx

We shall agin use the formala of intearation by pails 1o evalunre | xsing de. Thns,
< . -

i

jxs'inx dx x{—cosx} - j (D (—cosx)dx  (7(x) = x. o{x) = sinx)

—~XCOsX i Icn_sx dx

il

= —XCOsX o sinx + ¢
Henee, '
J x-cosxdx = xMinx + 2xcasy ~ 28inx + ¢
Note that we have written the .nhunn\' canstant as ¢ instead of 2¢.

il
L

L . .
Now [-xzcusx Ux = (xX7siox -+ ILcosy ~ 2xiny + c)
It ‘o
. T

=22
i

[F)

Example 18 Lel us now cvajuale [w lo xj dx

Here we lake Infxi as the first factor since it can be dilferentiated easily, but cannot be
integrated that casily. We shall take x to be the second factor.

fxlnlxiclx = f(lnlx{}xdx

-

n

st - [y (22 ax

: F_Ir x:hli.\'! - é dex

.2 .
— X 1 ! I B L
2 Il\_ﬁ_ 3 N

While choosing Injxf s the (ivst factor, we mentionud that it ciunol be inegraled casily.
The method of :nu.grmmn by parts, in Taet, ielps us in integrating nx tog.

Exnmple 19 We can finc f!nx dx by taking Inx ns (he first factor and | as the second

[actor. Thus, e

- ' flnxflx _[(inx](l}tix

if

tnx [ lelx — I( -;L[I dx) dx

= (nsnx) - | - ex) ds

-= Al - fl dy - Adnx — x + ¢

xInx = xlpe + ¢ since lpe = |

i

xin{x/c) & ¢ - !

The trick used in BExample W, thatis, considering, 1 (nmty) as the second factor, Iu.lps
us Lo evaluate many inteprals which could not be evalualed exriier.

You wiil be able 10 solve (he r('!”t')\'fil‘l‘i', exurcises hy using Lthe methad of inlcgralién-h_v_
50 -t pares.
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-E10) Evaluate

a) f xnxdlx
b) [ (1+x)etas

c) f(]-l-xz)a::‘t dx

d) ficzsinx cosx dx

Take f{x} = Inx and g(x) == ?

Take {(x) = t+x and 2(x) = ¢

-Take f(x) = x* and g(x) = sinx cosg

Sin2x,

t‘-‘;'_'

E!} Evalwe the [ollowing integrits by choosing | as the seaond Inctor,

. . _
n) f:;in"x_dx h) fl;m".\'ux ) fuul"'.\' dx
[}

Methodzal Inteprarion
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11.4.2 Evaluation ol'f ¢ sinbx dx and f e™eoshy dx

Tocvaluaie fc"" sinbx dx ;mcl[ o™ cosbx dx, we use the Tormula for integristion by parts,

J e"sunby dx = (™) { - 'Tli coshy) - I[{;w“‘]{ - _ll; cosbx) dx

. il i
_ % e cashy + ,;_). j oeosby dx

It

I

___L R T ) my g .__j an L
B © coshy + i [(e")( i zinhx) {c b sinhx) dx

il

]

1f

1 . S - a? ax
5 c*cosbx + e sinbx — -l—t,— e™Msinbx dx -
3

Therefore. you will nolice that the Inst inlegral on the right hand side is the same asthe

integrai on the left hand side. Now we transfer the third terar on the right to the lehy

hand side. and oblain,

(l-i-i-—

o7 )J-c""‘sinhx dx = c""{-lil; sinhy - A cushx)
3 3

This means,

—% ¢™ (asinbx — beoshx) 4 ¢

Jc‘”‘sinbx dx = >
a°4+bh

We can similarly show that

Ic“"cosbx dx = —~—2]
At

\
2 T (acosby + buinbx) + ¢

If we pat a = reosD, b = rsin0, these formulas become

Jp“"sinbx dx = e™sin (hx—0) + ¢

|
J a2 +h?

Icf“‘cosbx dx= S ecos (= 0) -+ ¢, where 0 = tan

’ Vafkh )
Exwmpte 20 Using the farmulas discussed in this sub-section, we ean easily check thal
)i jc"sinxdx =

'un_d

-ih

C
|

e*sin{x — %) e,

“

i) _ J"c“qos Jxdx = -é-c-‘cus( J3x- %r-] e

Exumple 21 To evaluale f ¢™ winx cos2x dx, we shall Jirst write

" ginxcos2x = % (sin3x — sinx} nsin See. 3.

Thercfore,
2o e de = b [ omvenre e — Lo i el
e sinx cos?x dx == j¢ sindxds — 5 Lt sty ddx

Now the Lwo integrals on the right hiand sjde cin e evaluated, We see tha

Jchsjn?nx iy = Il'% ™5 (3x - ™! —'::—) SIS
and

.. 1 - -
jcz‘ sinxdx = IS e sin (x — tan”! —l--} e
Hence R -

i AT 1N i TR S B
sinx cos2x dx = ¢ | sin (3x —tin™ 30) - CSIN(R = T o
3 5 ' 2

S

Methls ol Bilgerating
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Iniegral Calculus I .
- Example 22 Suppose we want (o evaluate J’ x* sin {alnx} dx.

Let nx = u. This implies x = ¢" and du/dx = 1/x.
Tllcn,-Ix 5in (nln*;]dx = | %" sin (alnx) (1/x) dx

j.'lu
=
J16+a2
R—-.-]_
V 10+2a?

- Why don’t you try some excrcises now,

sinau <y

e™ sin (au — tan~"(@/d)) + ¢

x"sin (alnx — tan™ -:';}) +c

E Ll1) Evaluate the followinp integrals -

.':) J'c""coqd\ dx b) ’- cMsin3x dx ¢) f ¢Meosx.cos2x dx

d) Jch cos”x dy ) fcushax sinbx dx (write cashax in terms of

the cxponential function)
N J xeMsinhx dx
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Example 24 Letus evaluate the following integrals. ) Merhndsnf 1ategration

JL=sinx -
8 f ”"* Jotds i) [ o

“Tacosy

i We take up (i) (irst,

b ———c"dx -
(2+x)? (2+x)?

_fr 1
[l e

D S ince ——L =94 /1
= T e+, SlnCLW dx(E-l-x

Now we shall evaluate ii)

[

] 4+cosx
X
CCI‘:——* QII'I""
=J 2 - 2 —xﬂdx
2c08® —
< 7
_-II i-m.ﬁ_l_[ Xsec X e 24y
‘ 7—2-‘50(:26 dx 5 lnnz‘scczc' X
Now

jscc e e 2dx= (scc 2) (~2¢7%) - f (-,i,— sec % tan -'%) (=2¢™) dx

= —2scc-2- g 4 fscc 5 tan N g2 dx

2°¢
Thus,
J‘ J I—sinx
1+cosx
— i—:ﬂ ij o 1"‘. l-—xh.l -
= scczc +2 qcczt'\nzclx 5 ) see 2['1|12L dx
=_—scc-§—c“"2+c

Inthisunit we have cxpoch you ta various meLhods of integration. You have also had

a fair amount of practice in using these methods, We are now giviag you some
additional exercises. You may like to try your nand at these too. To solve these you will
have to first identify the method which will syit the particular integringd (he best. This
is the crucinl step. The next step where you apply (the chosen method o get the nnswer
is relatively casy. I you have studied this unit thoroughly, neither or these steps should
poseany probiem. So, good luck!

= EI5) Evaluatc the [0![0wingintcgrals:
. . i .
a) f(2x34-2x4-3)c1x b) J%,z_clx .
cF o sI(NI2) cosh(NE) dx

d) J’(c‘—c"‘)’dx ) J'—-;xzz dx

> S -
.f) J’md‘\ .g) J'sin.;:.c“"‘" dx ) _ ] ‘
=i .
] _sinx cosx_
__d .
. h)'J’.lJ"sz § )£ (1+ Rmx):‘

T TN e




58

-
llegral Culeufus
1

) J’tx2+2)”x“dx 1) fw_ X242 dx

. Iy ’ —_—2 .
)] fﬂu‘—dx' m) Icns"(:—r’f-i-)dx
-x

(1-+x?%)*?

0] Jc ¥ (In sinx + cotx) dx

SO T




E Ei16) Prove that

J’.u-gizdx=u—dl—- du + | v
dx

d?u

ax " Vax YIvgE ds
. and use it to evaluate f x? sinx dx
b ]

Mcethads ol Endegrotion
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‘Belore weend this unit, here are some gencral remarks about the existence of integrals.

The result
e

[ 86y dx = [FGOT® = F(b) ~ F),

n "

where F(x} is the antiderivative of {(x), will make sense only if f(x) cxists al every point- |
of the interval. Henee we have to be carelul in using this resull. '
Thus,

f ] dx*‘{ln|k|]"~*ln -%P-i— -
|nl

But 1/ is not delined atx = 0, and In_|x| is also not differentiable at x = 0. As such, at
this stage, we should use the result only if the inwerval [a,b] does not include X = 0.
Thus,

2 .

fl = ..2_l=-ln 2isnot valid.
4 X -1

J;}( dx=in I!' 2 In -é- is valid.,

Again, consider

| C
1 P T B

J ————dx = [sin"'x}_ = -5

0+ 1—x% o =

We have used this in Example 3. Flowever l__ doesnotexistatx = I, andsinT'xis

1—x?
notdifferentiable atx = 1. L{sin™'x)’ exists atx = 1, but R(sin~'x)" does not exist, since
sin~'x itsclf does not exist wien x> I ’

However, the above resull 4s troe in some sense. This sense will be clear to you in your
COMTSE ON ANalysis.

The antiderivative of every funclion need not exist, i.c.. it need not be any. of the
functions we are fumilinc with. For example, there is no I‘uncllon known to us whosc

durw ive is ¢, However, the value of the definite integral f f(x} dx of cvcry

funcnnn where [(x) is continnous on the interval [a, b], can be found out by numerical
methods to a_ny.dc;,rcc of approximation. You can study these methods in detail if you
take the course on numerical analysis. You will study two simple numerical methodsin
Block 41loo. Thus, we cannol find the antiderivative of c"‘z, but still, we can find

the approximale value of
10

J'c“‘? dx, for all real-values of a and b. Tn fact, this integral is every important in
a -

probability theary and you will use it very often il you 1ake the course on probability
and-slatislics.

Tawcinare sner dom dlia aaasd A0 rhio H I adoa sk run by
LILRIALE AN L L i EE TR T P uuuuuunv WAL WS a

1.5 SUMMAKY

In this unit we have covered (e following points.

1) 1f F(x) is an antiderivative of [(x), then the indefinite integral (or simply, integral)
ol (X} is ' '

J_f(x) dx = F(x) + ¢, where cis an arbitrary constant.

HYT I ey




2) J [kl'fl(x) + k000 + . + k-nr“(;:)'] dx =

: k'I I f(x)dx + sz‘ F{x)dlx -+ ... +k, j f, (x)dx
3) 'The methed of substitution gives

b Bl

'_I' flaf)]e'(x)dx = J f(u) du, il v = g(x).

TR . i),
In parlliculgr,
I[If(x)]"f'(x)dx = “(:_)I_]l;“ +e,n# -1, and

rix) _ ] ’

J’-m .dx = In]fi(x)| + ¢
H ’ ' w2 w2

I[(x)dx = Jf(:-:) dx +-.,’ [(a—x)dx

B a 0

! ij(x) dx. il [is even
[txyax=1 o
0. il fis odd.

4) Standard formulas

dx -
J X =it e
a3 k] a
a’—yx* ‘
_ . ,
. =
dx WX+ YatEx?t o
. — ,—‘= ‘n '_'T'_- -3- c
a2 x"
. + 22
J‘ g _ g Xt VxEmad

7 /xz_ﬂz a

. 5) Integration-of a produci of two functions (integralion by parts) :

I u(xv(x)dx = u(x)jv(x)dx - I {u'(x)!v(x)dx} dx

This icads us to:

’ f“ a?—x? dx =%.*J PN LR O

) a

' . ' '—-_-'__
3 a2 + attx?
. J’Ja-+x'"'_ dx=-_%x al4x + %ln -’-‘-—‘ir——+c

. ! 1 - 7 A%, X 1 xE—al
' Jsz—az dx =-i-xdxz—n - '.:2_'“ —————t €

Ic“"sinbxdx =-rl— &™sin (bx — tan™' %) .
- Jat+b? R
[ e™ cosbx dx = L e™co (bx — Lan™ -l:) + e
. FLNATC I !

jc" [F(x) + ' (x)] dx = e® [(x) + ¢

11.6 SOLUTIONS AND ANSWERS

LED AR 4e i) -nPace ) -dt e

Mlethods of ntegeation
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' {nll.-u;'nl Colculuy

G2

' 2
bY ) x —x+ &+ ¢

i_i)-2‘3—’—:ax'—--ix + e

. P
iil)x-|-~3-5-+x3+—3-f-+c

4

¢) i) e*— e+ x4 c
“iii). 4 tanhx + ¢ — 4x2
+d) i) 2sin”'x + Sin|x} + ¢

Tl

iy [ 200048 s faesf -

by i ' 2
ii) 4s1px+3cosx+c"+—’:‘a- + ¢

+c

=-2x + 3lnn‘ ‘x+ ¢

)ax“+h§c+ +dx +¢

- .
9 i)ISInx+cosxdx

sin®x cos®x

ii) —’é-z- —2x Injx| + ¢

f (L.mzh+cns?x) ~ 2sin?x coszx dx
sin®x cos

=Iﬁ§dx+jcolx

—cotx + tany — 2x + ¢

i) Gx+ 22 4 on_
i) ox + > 3 X

E2) n) i) -‘i'i—s‘
b i) 275 i) 15

4 ]
E3) a) [(Sx—s)m ax =4
- =—;—-f-umdu=—;-%

by -1 (2a 1) dg 'e)im

5

dx—?.fdx

52

%x + c

) -%- + In2

S(5x~3)"dx  if5x—3 = u -‘1% =5

o= 22 sy ayV2
+ ¢ IS(S)c 3 +e

-'.;i a L lrl|10x+7]+c

&) 4 m |y +2x’-|-?| +¢  0ln |x-‘+x=+x_—3|] =m 3l

2.
"r4 x-t.-’_'i_l in t - —
g)i—)%-a——z-—+c=-%(xm—-l)m+c h)—%JI—quc
E 4) ] b
8.No. F(x) . j f(x) dx
1. sin ux —-—Ellcos ax + ¢
' 2, €0s ax. —}sin a+e
32 i
3. Sec” ax ry tanax +¢
4. cosec” ax % cotax +c¢
s, sec ax tin ax %’sec ax-+ ¢
6 COSCC Ax col ax -A— cosecax + ¢
7 e™ Lemyge
: a
x 1 al‘ll!
& | am ™ ina




b . [ q o+ : -
ES) a) jsccx dx = J’_'.:,Lx(sccx tinx)

dx = Inlscex+tanx! + ¢
scex+iany & = Ingscex+tanx] .
2 -
. .
b) j sinx cosx dx = SO0°% [ _ 1
0 i 3 3.

B

¢) ITu = 1anx, ﬂ-‘_{‘- = see’x

= f ™™ sec’x dx = fc" du = ¢" 4+ ¢ = plamx 5 o

E6) a) i) Sx o o i~ 4
¢ sin’x
i LA

iii) f col2x cosec™2x dx = —fcot"x (2cosu:- 2x) dx
i nih

x co{;zx J ﬂ= 0

/6
_iv) Put cos20 =y, Then gﬂ = ~25in20

e
2

f'sinZO e W gy = —;— eMdu =~ ~,,I- e + ¢,

’ — __L rosdn
2(: tc

w2 e il

v) $in0(14cos'p) do = jsinﬁ do +‘f sin0 cos's do
1] 0 4]

n
— cos “—-—-—COSSB "
3
0 M

=j+1 =6
I+5 s

G (Tbseet)t T (14 /3y6— 24 T
iit) --——-—’4 - = y T
| g |

b f sin%0 dg = [sin’fo sind do " - PR

w f(% sin?f = %si:ﬂl&i’.i:iu) di.

' % f {1-(1 —Zsinzﬁ)} dn - %f (cos20—cosdh) do-

] - b
%J‘dﬂ - -—jto';Zﬂ do - g [ cos2i 40 §! cosdd

1 sin2Q o+ a xlndﬂ
2 2 84

"IL
iﬂ

.n.]'--'

39 - +
(2 0 - sin20 + 4 8 sind0) + ¢

o [ e L
i} fsm30_ cos0 do —3[[&[149 d0 + [sin20 do)

Meileds of Inlq;rn!inn
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-Inut'grnICnlculus, 1 [ —cosdd .
=T.[c—?:' = cos20 % ¢f -

w2
iif) IcosSO cosb d0 =
1]

sindd _ sin60 ]"’L 0
8 12
- 2
T . _ 19
i) Jcosﬂ c0$20 cosd dO = 05

.. dx - _ [ dx : x+(1/72)

i = = sinh™

) j V14x+x? V3 +(x + 1/2)% " ( J3n )’ + c

(x+If2)+J !4+(x+1)‘2)2
Jir

(x + 112} + Jx3+x+]

Janr
4+ 1+ 2Jx2+x+1 I e

or

dy dy -l y+3
i) = L =cosh (=) + ¢
Jy 6y +S5 j J{y+3)2~4
. x=
dx = [ dx — | —=-
) / [+ fos-] 1
=z —tan"lx % ¢
£ =500 .
-ET) v = mdl-l-c.
=—500 lan~lt+c.
"v({0) =700=-5001an 10 +c=c
- = ¢ = 700,
- : v(3) =760 - 500 1an—13.
E8) I'or solution, see %, 104
o 2 w2 . .
%Y a) J $in°X cos’x dx = Jsinsx cos™x dx + fsin’(qﬁ-x) cos*{mw—x) dx
(1] 1] U] )
i o2

Js:n xcos xdx — Ism x co5°x dx= 0
r
ufd L

b) Isinzx Intanx dx = Jsinzx In tanx dx
] . t .

wi

. -+ J’sinz(—;L -xIn mn(-"zl — x) dx
o - .
L 2] w/d

= J.sian tn tanx dx + ‘J’sian [n cotx dx
i ] * '

T

sin2x In (lanx-cotx) dx
1]

EUE
{sian Inldx =0
{ 0 a

f {(x)dx = J f(x) dx +'J [(x) dx
0

~ =

) a
- 64 Putx = —~yin j f(x) dx




E10).

EiLl)

J l'“(x) dx = — | [(x) dx 4 If(x) dx =10

-

a) Ix: Inx dx

It

lnx I Xt dx — J (% J X2 dx) dx

_ x? IJ'
—_-In:n. 3 3 K ch.
= XYy - X 4

3 nx 9-{c.

D) xe* + ¢

f 2 s
c) |} (1+x¥) e dx = (I4x¥)e* -2 j %o dx = (1+x%) ¢* — 2[xe* — I c” dx]
= (1+x%) ¢* = 2xe™ + 2¢" + ¢

=" (xX*=2x¥3) + ¢

d) [ x” cos2x'+ xsin2x + -:!!— cas2x] + ¢

a) fsin“x ax = sin'xox — J’-—]__— XX

J1-x2

=xsin"x+ JI=x +¢

T b)l"}-——-l—‘inZ

E12)

El3

2

¢) xeot™'x + -%1- I (i+x%)

- 2 1l -
a) Ixsm“x dx =xT sin”'x — -—I-I dx
2 j—x*
" B ) .,
Putx = sinu 1n I X dx = J‘—t'ln—“ cosu dn
l_xz cosu

1
—

sinfudu = I-[-_—ng-@- du-

=l - —1- in2 =.i- —_ _l.. 1 = .
5 U~ sin2u + ¢ ==y~ sinu cosu +-C
-1— [sm x — xcos(sin”'x)} + ¢ ’
. 2
. jxsin'-’x dx = % sin”'x — "if [sin”' x — X\"Il— Y+e
. b) J‘ln(1+x2) dx = I 1dn (1+x%) dx : . :
22 s
= xln (1+x* -J dx .
.( ) 1+x? .
= xin (14+x%) — I-Z[l - ] dx ' i
- _ H 2 -
. — xin (1 4x%) — 2x — taw” k.! +c
a) 31-0— ¢>*(2cosdx + dsindx) + ¢ g

o) % ¢**(3sin3x — 3cas3x) + ¢
c) Ic‘“‘ cosx cos2x dx = -é- I e¥ {cos3x - cosx} dx

-é— [I ¢** cosIx dx + f ™ cosx dx]
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. falegral Cafculus, = %! [-—21,-5- oi* (dcos3x + 3sin3x)
+

% o™ (4éosx + sin)] + ¢

d) 'Icz" cos’x dx = jcz‘ (———°°§223+1) dx

=1 [Ic" cos2x dx + fcz" dx]

2
2 [ € Qeoszx 4 26im25) + Fe2) + ¢

e} | cosh ax sinbx di = '(M)‘sinbx dx
: 2
= -%—{ j e smbx dx + f ~* sinbx dx]-

=
S 2 2-t—b)

[c'“‘ (asinbx— bcosbx) L e (-—asmbx-—.bcosbx)] -l- c

) f"xc‘“‘ sinbx dx = x f e™ ginbx dx
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X
aZ4h?

¢™ (asinbx — bcoshx)
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( +b)

be™(acosbx+bsinbx)] + ¢

El4) a)‘"‘f,/az+"xz dx = x Va4 x? _,f x2 dx

024-x2

‘ R ) ' 2y2 2
_ = yxvai+x? —f L ax +f & dx
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| : 2 . . 24y2
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- - ) 2
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UNIT 12 REDUCTION FORMULAS

Structure - -

12.1 ]nlruduﬁtjnn ' S . 6B g
12,2 Reduction Formula , 68
12.3 Intcprals Involving Trigonometric Funclions _ 69

Reduction Fonnulas rnrJ' <In"x dx anpl I cos"x ¢x

Reduction'Formulas for j ran"x dx andJ’ sec"s dx

'12.4  Integrals Involving Products of Trigonometric Functions w15
Integrand of the Type sin™x cos™ -
© Integrandol'the Typee**sh™ © =~ - . S
12,5 Integrals Involving Hyperbol:c Functions T 79
12.6 'Summary &0
12.7 Solutions and Answcrs ) g1

12.1 INTRODUCTION .

In the first two units ol this block we have Introduced the conceplt ol a definite integral
and have obinined the values of mu,gruls ol some slundur¢] forms. We have also studiet
twa lmportanlmethods of evalnating upgi{‘gml-s. namely, the'method of subslitulion and
the method of integration by parls..In'thasofytion of muny physical or engincering

- problems, we have lo'infegrate some integranids involving powers or products of

trigonometric funclions. In this unil we shall dlevisc a guicker method for cvalu.nlmg
these integrals. We shall ConMdcl’ some standard forms ol integrands one by one, and
derive formulas lo lnlcgr'uc them. L

[y
-

The integrands which we will discuss iere hve one thing in common. They depend
upon nn inleger parameter. By using the micihod of integration by parts we shall try to
cxpress such an integral in terms of another similar integral with a lower value of the
paramcter. You will see that by the repeanted use of this technique,we shall be able to

_evaluate the. given integral.

Objectives
Afier reading this unit you should be able to derive and apply the reduction formulas for

) f x"c*dx

L] Isin“xdx. [cos“xdx. Ilfln“?«.'dk' ,clc.l
°. J‘sinmic t.:os"xdx

. J‘c“;‘sin“xdx

L fsinhl‘xdx. [cgsh“xdx

"12.2 REDUCTION FORMULA

Sometimes the integrand is not only a funclion of the independent varinble, but aiso

.depends upon anumber n (usually aninteger). Forexample, in Isin“x dx, the integrand

sin"x depends on xandn. Similarly, in J-e" cosmx dx, the integrand e*cosmx depends

.on x and m. The numbers n and m in these two exiunples are c’lilcd parameters. We

shall discuss only mtcgcr paramcters here,

R e TR




Onintegrating by parts we sometimes obiain the valuc of the givenintegralinierms of
another similar inlégral in which the paramelter has a smaller value. Thus, after a
number of sieps w~ might arrive at an integrand which can be readily cvatuated. Such
‘aprocess is called the method of successive reduction, and a formula connecling an
integral with.~~ramcter n 1o a simiar integral with n lower value of the parameter, is
called a reduction formula, )

'Dol'mlllnn_ it A Tarmuala ol the form
. _[l‘(x.n)dx = p(x) + Jf(x.k)dx.

- whére k < n, s called o reduction formula.
-Consider the {ollowing example as an illustration.

Example I The integrand in rx"n“tlx depends on x and also on the parameter n which

s the expongnt of s. Ll

I, = Jx"u‘c]x. :
Integrating (his by parts. with x" as the first function and e* as the seeond funclion .
gives Us ' '

x"’c‘dx - I(n ! !L“Lix)dx

]

= x"¢* — 1 f X erdx

Note that the integrand in the inlegral on the right hand side is similar 10 the onc we
started with. The only difierence is that the expanent of % is n—[. Or. we can iy that
the exponentof x is reduced by 1. Thus, we can write

L=x""—nl, {1
v . 1 .
The formula (1) is & reduction formula, Now suppose we want to evatuate Tq, thal is,

' 'I:;"c‘dx. Using (1) we can write [, = x'¢¥ = 41, .

s ' x'e® — 4 (x> ~ 31,] using (1) for 1.

et dxfe™ (21,

= x'e* — 4% + (At ~ 24 1, using (1) for 1,

= xlet —dxlet 4+ 12x%t - 2net 4 24 Iy

it

 Nowl, = jx“c“dx = Ic"dx =c*+c.

Thus, the method of successive reduclion gives us

Ix"c“dx = xle* — dxle® = J2x%¢% 424 xe* + 24c* 4 ¢

in five simple stéps: You must have noted thal we were saved [rom having to inlegrate
by parts four times. This became possible beeause of formula (1), In this unit we shall
derive many such reduction formulas.

These fall into three main categories according as the integrand

i) is a power of trigonomelric functions. .

iiy is'a product of trigonometric functions. and

iii) involves hyperbolic fynctions.

We will take these up in the next three scctions.

'12.3 INTEGRALS INVOLVING TRIGONOMETRIC
' ~ FUNCTIONS '

Therc are many oecasions when we have 1o inlegrale powers of-[rigona - ric
functions. It this section we shall indicate how 1o proeeed in such -

-

Lteiluctlon Farmulas -

Through n recduction formula we
reduce the value of the pararmeter.

o4




-, lnluﬁml Coleulus

Fern=1

‘[:in“x dx = jsinx dx

1 —cosx + ¢

.70

12.3.1 Rcductlon Formulas for f sin"x dx and f cos"x dx

1n this sub-section we W'l" consider mlcgmnds which are powers of cllhcr smx or cosx

Let's take n prwer of sinffirst. For cvqluatmg sm x dx, we wr:tc

i, = Isin“::dx = Isin“" X sin’x dx, if n> L

~!x as the first function and sin x as Lhe second and integrating by parts.

Taking sin”
we pet
I, = —sin"'x cosx = (n-—l)fum" % cos k (—cos x) dx

= —sin™'x cosx + (n—1) J-sm"‘“'x cos®x dx

= —sm “Tx cosx + (n=1) [qu""zx (l—qm %) dx]
= “sin™'x cng + (n—l)_{jsfirl“'zx gx — fsin“x dx]

= —sin"xcosx + (n—=T}[I, 4~ 1]
Henee,
I, ¥ {(n=1)1, = ~sin"*xcosx 4 (n~1) [,

Thatis, nl, = —sin™'x cosx + (n—1) I,. Or,

' —sipn-! : =
1, =—Sin X cosx ¢ N - 1 I

ML n

This-is the reduction formula for Isin“xdx (validforn = 2)..

/2

. - i
definite integral, Isinsxdx. We first obscrve that
A

7 I ur 1)

. —sin"Ixcosx n—1| -
jsln“xdx = + Jsm“ 23ddx
U ‘ . 1] " . 11 i

. il
nfd
Lk ['ﬁir!"‘zxdx. n=2.
noy
LIr} w2

Thus, J.sm xdx = —-‘Js:n xdx
f]

w2

2
-3 fsmxdx

|°= :Iw ol

2
= {—cosx) } '
0

B
Letus now derive the reduction formula for (cm“xdx Again, fet us write

n

== Jcos"xdx = Jcos"“ x-cosxdx, n > 1.

Integrating this integral by parts we get

I, = cos"'xsinx ~ J’(n—l}cos“'zx (~sinx). sinxdx

cos™'x sin x + {n—1) jcas“‘zx‘ sin®xdx

cos"xsinx + (n~1) Icoa“"\ (1~cos®x)dx

H

= cas"!xsinx + (n~1) {1~ 1))

. Example 2 'We will now usc the reduction formula for fsin“xdx_lo evaluate the.

= =11

T = T




By rearranging the terms we gel-

- ’ ¢ n-I f—
I, = Jcos“xdx 05 nx‘;m.\ + n! l l"_

This formuia s valid forn = 2, Whatt happens whcn n= Onr [? You will agree thnt the
integral in each cuse is casy to cvaluate,
. As we have observed in Example 2,
’ w2 . . oo

. ] n—I ' -

sin"xdx = sin” \'d’( n=2,

n o

Usmg this formula repeatecdly we pet

. - . n2
"y p-l . n-3. n-5 4.2 fsinxc[x,ifn is an odd nnmber, n 2 3,
, .. )] n-2 n-4 5 34 '
sin"xdx = ot
11 - .
n—| n—-3 n-5§ 3.1 e "o i
- n=3 Th=f e T3 lch[m:. ifnis an cven number, n == 2.
. This means
- n={ n-3 4 2 ) ; =
” . T ThDE 5T ifnisodd, and n=3
Ism"xdx = l 3 . 3
¥ A= o n-3 A T
. n y, ST 7 g g-ilniseven, nz=2

2 % % ,,,,, :‘,2, —"h"'—l-,-ifn is odd, n = 3

fsin“xdx= ' X

i _;-3- ";l -%T—,il'nis‘cvcn,naz
o2

Arguingsimilarly for fcos“xgx wo get
n

i w2 -% —;.1- Lt ,ifnisodd; and p = 3

fcos“xdx. = fsin“xdx = :

R | -;—g ..... L‘%-%,ifﬂia‘cvcnna.l

We are Icnvmg the proof of this lormula to you nis an excreise,

Scc EN.

, ) 2 %-—‘5}- ..... L yifnisodd,n= 3

El) Provethat Icos“xdx = ! 3 | '
.D - L1 Sl S T T .
. > E — 2.|fn1sc\cn,n'e:2._.l_"

Redielion Formulas
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Lnlegral Calculus

. . nil Lt
E ©52) Evaluate i) Jcnr.""xrlx. b) Icns“xclx, using the reduction formula
[l 1] .

Werived in 12 1),

i :
©12.3.2 Reduetion Formulas for J tan"xdx and f see'xdx
In this sub-seetlon we will take.up (wo ather trigonometric lunctions @ (anx and seex.

That js. we will derive the reduction formulas for j(am"xdx and jsc_c"xdx. To derive a

reduction farmula fnern“xdx. n > 2, we start in aslightly different manner.

Instead of writing tan® x = tanx an™ "% aswe did in e case ol sin™x and cos™, we shall
- ] M ' . ¥ .

write tan™s = tan" *xLn’s. You will shortly see the reason behind this. S, we wrile

Il

[l:m'.'xclx = l’l:m"“:x ey dlx,

Jt an" ™y (seetx—1) dx

= Jh:m"’zx sees dx — _;r'[;m"' “udx r e (1

. You must have abserved that the seeond integril on the ripht hind side is [”_r
 Now in the first integzal on fhe right hand side. the infegrand is of the Jorm

[((x)]™ - 7(x)

Aswe have seenin Unit 11,

: (O

it eas =4

iy

Thus.Jlnn“‘z.\' see Xy = ey




- . ) - H nely
Hu:rclnrc.(?]gn'-.-sI‘, = —l-;]ﬂ_-_--l-ﬁ = Jp.

Thus the veduetion farmuli for Tan®s dx is
I -

I T lill'ln-lx
__{-I.ln Xk = 1, = TR L.

Ta derive the reduction formula for jscc".\'ﬂx {n = 2). we first write
“sec”x = e sec™x. and then integrate hy parts. Thus.

P L T BT
sec" TN seerxdy

I, = fsec".\'tlx =

see™ X i x — {n=2) fsuc" Yeewee ¥ Lany dx

_3., . i .
= sec" X iy - [n—E}J’scc" Xty dlx

A

SeC"X tun x — (n=2) jscc"“lx (sce™x—1) dx
= sec" N anx — (n=2) (1, - 1, )

Aller rearranging the lerms we get

sCC™y Lun X =2
_{suc“xgl.\' =, = SCCOIN LAY | n—2 .
n—1 n._l n-2

These lormulas I'nrJum“x ¢dx and fsuc“x dxarevalidforn > 2. Forn = 0, Fand 2. the

inlcgrails ’ tin"x dx
in Units 10 and 11.

nH i
‘Exnmpled Let'scaleulute - i)_'fum"‘xdx_ angd i) f;cc“x ux
L ‘ " . 1
w4 . TS
' f tan'x 1
i) lem"xlﬂx = AU Jmn'x dx
T 4 y i
1)
w4 TH
RERLE P ] P
= b7, tanx o tanx dx
4 2
I i
. i
. = L1, [ SILIE
: q 2 1| COsX
! i
= = — |n(cosx]
p (cosx]
1]
- = 4oL+l

4 J2
'-TI-I- Inﬁl . )

1

/4 wil WM .
o i ! Iy anx - .
ii) J’sec’xdx —qo—c};ﬂﬂ\- _! + —ﬂ; fscc‘x x .
0 ) 0 Tou
. Lt AL \
w3 A sedytany 2 feee x|
5 5 3 3
il ik
L1
a1
= i + —S_ - i (scc:ulx
b I5 15 ]
RTIAS
4 8 28
= o -2 lanx | = =2
3 15 J I3
]

On the basis of our discussion in this section yvou will be able 10 solve these exercises,

and jscc“xdx can be easily evaluated. You have come across them

Redurtion Furmulas

You st bave now realised why
W wraly
Ly = lans it

73
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- futeeral Caleulue E 13) Desive the following reduction formuias for fcot“xdx and fcosec"xdx:
e =1 — Anl
a) f cot" xdy =] = . cot" 'y — [ _, ~
—c -2, . -
b) fcoscq"xdx=ln - coscc“_ XCOtx . n_2 I
o - n—1 n—| 'n
E B4 Evaluate
w3 w2
) fcoscc‘xdx ) jsin“xtlx c) _(scc“ﬂdﬂ
] n
E
?

4




12,4 INTEGRALS IN‘FOLVING pRODUCTS OF Reduetion Formulns
TRIGONOMETRIC FUNCTIONS _ : S

In the last section we have seen the recluclion formulas for the case where integrands

were powers of asingle trigonometric function. Here we shall consider some inlegrands ‘
involving products of powers of trigonometric funciions. The technique of finding a

reduction formula basically involves integration by parts, Since there can be more than

one way of writing the inlegrand as a product of two funclions, you will see that we can

have many reduction formulas for the same integral. We stagt with the first one of (he
two types of integrands which we shall study in this section. .

12.4.1 Integrand of the Type sin™x cos”x )
The function sin™xcos™x depends on wo parameters m.and n. To find a reduction

formula for fsin"‘:‘c cos"xdx, lct us first writc

' = H Ll -
I n = Jsin™x cos"xdx

Since we have two parameters here, we shall toke n reduction formula to medan A

formula connecting Imn and I, o, where either p<m,orqgq<n,orhothp <m,q<n

hold. In others words, the value of at lenst an¢ parimeter should be reduced.
sinm+ 1y

+ c,whenm # =1
m+]

Ifn=11 ,= jsin“‘x cosx dx =
In[sinx| + ¢, whenm = -1

Hence we assume that n > 1. Now,
[n,n =-J5I0™x cos®x dx = fcos""‘x (sin™x cosx) dx
N ~

‘ntegrating by parts we get

. cosn=ly-ginm+ix _f O sinm*+ly . _
ma = Ty = J{n— 1) cos™%x(~sin x) “m dx, ifm # —1
— £os"—ly gjpm*ly n=1 {. N2y f] 2 .-
et mET fsm X cos" k(1 —cos*x)dx
= cos"~Iy.gipmtly . o 1 S
m+1 m+1 M2 7 imea
‘hereforc,
: n—1 v _ m+n = Cos"~Ix gjpm+ly n—|
nn + m+1 T = m+1 Lo = m+] + m+1 Tonn2

his gives us,
= cosh=ly gipm+ly -
T~ T v MR )

ut, surely this formula will not work il m + n=0. So,whatdowedoifm+n=0?
ctually we have asimple way out. Ifm + n = 0, then sincé n is positive,
e write m = ~p, ‘

Remembier we have takean = 1t

ence I | =[sin™"x cos"xdx = fcot"xdx. which is easy to evaluate using the
duction formula deriveq in Sec, 3 (Sec E2Y). .

> obtain formula (3) we had started with the assumption that n > 1.

stead of this, if we assume that m > I, we can wrile

n = fsin“'x cos"xdx = fsiu‘“"x(cos“x sin x) dx. Integrating (his by pzlrl's we pet

—gipm-! Iy - o ~cosh Iy
o= n n:fos AR (m—1) [sin™"2x casx (

m-kn

dx forn # —1 o

-
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E B35 lnderiving formuli (4) we itk assuned that oz 1 Flow woukl you cvalume, [

—sinM—tx cogn™ Iy - . .
==l n+fm' E o+ ';'1“] sin™2x cos"x(1—sinx)dx

—sinm—!x cos"+Ix
n+-1 * l'l+] (Im--z n Im.n)

=

From this we oblain

— —sint=Ty cogn+ Iy 4 =1 (I )
-

Linon m++n m+n rtre )
I m 2r nis a positive add integer, we can proceed as follows

Suppose it = 2p 4 i, p = 0, then

|

wa = fbln'“?. cos?P My gy = jsm"‘x (1—sin®x)" cosx dx

I

fﬂ“ (1=3)P dt if we put t = sin x.

Expanding (1~t3)" by binomial thearem and integeijng term by term, we get

m+| me 3 mis —1 [\[n|+2p-;—|
Lim.n =ﬁ—1— = T [ = Clp.2) [niﬁ et 4 m)+2p+l Te
— Ssipmi! \ln'“' X sin™tix L
- m-H - U ) =i + G s m--3 *
— Nepnm- 2Nkl .
{—1)gipma I+t y e

m+-2p+i

Ifmand nare posilive integers, by repeated applicatians of farmula (3) or farmuta (4),
we keep reducing norm by 2 ateach siep. Thus, eventually, we come o gn integral of
the form Ly or by, 08 1y 01 Ly, i the previous seetion we have seen how (hese can
be evaluated. This means we should be able to evalaate @, , in 4 linite number ol steps.
We shall now look at an exaniple to see how these tormulas are uscd.

w2

Exampled Lelus cvnlu:ltcfsin"x cos"s dx, Here m = 4 and n =76, Since m is the

i
smaller of the two, we shult employ fonnula (43 which reduces i at cach slepy,

= . L [Lal
J.sin".\' cosdx = _IIJ_;;;._‘LE-J -+ Ill' Iam Iy ensfudx
fl 1]
¥ ':'ru'_:
— 3 e i b
= 1J sty cos"xdx
[ i wf
. 3 — %I X COSTX 1 f
= | TSN COSTX ens
0 R ] f Nelx
using I'mmul,l (1) again.
w:!
. = i [Lm ptey
3 351 g : . dm
AP LAV, g LS LU -'2 Yoo AT
w0 0 (Trom 15 2) b)) SE

Are yorcremly to solve snmg exereises niw?

nin

—

N

ifm = 17




Reductlon Forplas

E ".‘_EG) Formulas (3) and (4) fail when m+n = 0. We hitve seen how (o evaluate 1, ,, if
m-n = Qand nisaposilive integer. TTow would yon evaluateitif m--n = Oandn
is a negalive integer?

E E7) Evaluate

e 2
' ind cacdedy bY | sin®e cocivdy .
a) (siny cosPxdy W | sinSx cox®xdx
| 0

12.4.2 Integrand of the Type ¢"sin"x

In this sub-seclion we Wl” consider the cv.Ilu.lilon af those inteprals, where the
integrand is a product of a power of a trigonometric function-and an cxponential
[funclion. That is, we wiil consider integrands of the type ¢"™sin"x. Letus denoe

-Jc“"sm"x dx byL wr and inegrate it by parts, taking sin®x s the first I'unclmn and e* s
the second funetlon. This glves uy

FEHTLIY N
L, =230 0 Ic"‘sm"-“xcns X dx-
a0 - H]
We shall.now cvaluate the integral on the right hand side, again by parts, with
*5in®"'x cosx as the first function and ¢"as the second one. Thus.

i

_ esinx n [ essinn—x cosx [ . L . {n-1} sin™? x cosx
L, = —— — —| =~ — ["{(n-1)sin"""x cos®x - sin"x}elx
t a i1 a4 . = {n=1}sin"~ x {1-sinx)
. . ) "= (n-1ysin™x = (n=1) sin"x.
eMsin'y n| c'sin" % cosx : . . .
== 30K D) S XU oA ™ {{n=1sin""2x—n sin"xhlx
-t il il -.-. , .
This mecans
L. = eMsin"x  _  ne™sin" Iy eosx " "‘("_1)1 _ n:I
n ¢ a e 3 -2 T e !

iar a 18 . 77
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. Moin \BXein— b . nin—1I
L, = deYsin'x _ nedtsind~!x cosk -, (n-1) |

‘Rearranging the terms we get

n—2-

n+a? n2+a? n%+a?
Given any L, we use this reduction formulh repeatedly, lill we get L, or Ly (depending
onwhethernis odd oreven), Since Ly and Lgare cosy to evaluate, we are sure you'can

evaluate them yourself. (Sce E 8) ). This means that L, can be evaluated forany

positivé integern. -
Remark 1 If we put a = 0in L, it reduces to the integral J’sin“xdx. This suggests that

the reduction formula for fsiu"xdx which we have derived In See. 3 is a special case of
the reduction formula for L, ‘ '

Ifyou have followed the arguments in this sub-section closely, you should beabletodo
the exercises below.

.- [ E8) Prove that

L ax .
a) L, = _‘2".:.“_ +c. b) L = Ic“smxd;c = linz (a_mnx—cosx):l— c.




E E9 prove:irc, =J.c“"cos"xdx. then . S , Heducllon Formutas

C = ne"ltnsz“x + nc""cm""‘x sinx ﬂ(ll l) C
. n’+a nipt  nia?

n-2

]

E E10) Verify that the reduction formula for fcosa"xdx is 0 special cnse of the
formula in E?).

12.5- INTEGRALSINVOLVING HYPERBOLIC - |
_FUNCTIONS o]

In this scetion we shall discuss the evalualion of inteprals of the type fsinh"xdx,

_[cosh"xdx ete _
Actually, you wilt find that the evaluation of these integrals does not involve any new
techmqucs In fuct, the procedure we follow here is very similar to Uie one we followed:

for Integrating sin"x, cos"x ete. Let us find the reduetion formuly for, sy, I(nnh"xdx ‘ .

e WIG birg yuu WIII e l|lJlL i IQIIOW II'II‘\ cusi Iy nngderive the TC(l}ICl'IDI'I IOI'ITI'lIlﬂS for
the ather iyperbolic functions (see E11)).

Ifl, = Jtanh"xdx. we can write

) d 1
- : — anhx = sechix
Itunh" % tanh®x dx dx

"
Il

i

Jlanh“‘zx (1—sech®x)dx

J‘lanh“'fxdx - Il:inh““z.x secli®xdx -
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= ly-2

_ _lanhr—Tx

n—1

. Dop’t.you agree that the above method is similar to the one adopted for ftan“x dx?
The Tollowing oxercises can be easily donc now. '

E EL) Prove the following reduction formula:

Isinh“x dx =

sinh"~'x coshx _ n-—|
n

sinh"~2x dx

Fl

E EI12) Derive a reduction formuls for fcosh"xdx

. R i . ™ : - " -
That hrings us Lo (he end of this unitl. We shall now summarise.what we have covered

init.

12.6 _SUMMARY

|, . ' - ' L .
A reduction lonmuliis ane which Jinks aninwegral dependent vn o parameler with a
similar integrid witle o lower vilue of the paremeter.

In this anil see ave derived @ momber of reduction formulis.

.
1 ]’__n v
1 Ja v LA RN

,2 l.\'i:l"xd.\
3 [cm"xdx

4 Jmn“x ds

I

no. C N

. [ . .
At = A" et dx

—<in® ‘xeosx . onel Loy -
SER RS D e Yy day e 2

il it

eont' e osiny 1

et
n n -

an- Iy " o
.l_‘!]‘__!-_ — D" xdy,n 2
n-- "

jens My dy,n 2




. < ;""2Yl' , . 2 Restuetlin Farnwlas
5 Iscc"xdx, = feC__Xlan o .0 [scc" dxon =2 '

n—1 n-1 -
3 T
3 2 %% ..... Hﬂi‘--.irnismm.n-—;a.
6 fsiu“x dx = Icns"xtlx = '[ .,. -
. =1 W oiragi 3
E Sn L, e A Jfmieven, n-x 2
Q 0 2 4 n 2
: . cost Iy gin Iy n- . v "
7 Jsm "xeos"sddx = L LA, B ,I sin'xeos” cxdn,n e
m-+u ni+-n -
._5' |||—‘II. gt I'- ! i a .
b s I costt i omee | sin™ vxcos™sdy,m -
nkn m-i-n
o aelsint, . net™sint lyeos n{n—i A -
g J’c..\ st dx = AEUSINt o netsinhixcosx (‘ _’) o™ 2xlx
n-+n- n-+u n---uc
_ n=1
9 Imnh"xdx = _.L:;'l_l"‘]_" + jlzmh“" By

We hove nated thnt the prime technigue of deriving reduetion farmulas involves
integration by purls. We have also observed fhat many more reduction formulas

~involving other trigonometric and hyperbalic functions can be derived using the same
technigue.

12.7_SOLUTIONS AND ANSWERS

il nil e
Lol B _— T .
Eil) Wechave Icos“xclx = Q8T NSINX -+ Ll cos" xNddx. . n T 2 .
i n . noJ
.ol
= it [cus“"‘x dx .
i
afd
LI RN 5 By YN
n n—=2 4 j
n—-l n—3 n-5 301 J 0 o
..... — e pros xdx_ilniseven ;
n n—-2 n-d e B E
- [
— -3 n-3 4 2 . e
n—| o—d n=> o Jcnsx du.i0nis oddd
noon=2 n=i 3 03 i
n—=1L n=3--n—=5 I I, ST TS
e L - lrnisoven
n n-2 n—4 4 2 2 )
n-1 n—3 n-—5 4 2 i
ey IR - & jliaisodd
n n—2 -4 303
. mid
5 T 4 2 g
E2) a) i!cos xidx = T Y T e
2 i
5 1 1 T S
b fcos"'clx S A R S L
) Joosx 5 T2 32
E3) I, = fcol"x tix = Jcm“'lx (cosee?s — ) dx n>2

= Jeot™ 2 cosees dy — :
- . - . - n- 2 Sl
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—_—— e ——— e e

—cal® Iy r
- In=-2

Therefore, [, = o :

b) I, = fcoscc"x dx-=[cnscc'—"1xcoscc"x dx n>2
= —cosee™ % cotx —-‘j(n—Z) cosee” *xeot?x dx .
= —cosec™ 2 cotx — (:1—2)[0:0500""2:: (coscczx—l): dx -
= ~cosec" % cotx — (n—2) I,, + (n—2) lh-2
| = -ccosec"~3xeotx | n=2 -
n . |'L""] S — 'n 2
"2 . il | >
E4) a) fcoscc’xclx = -"msczﬂ] o J.,cosccx dx
i - ' i wi .
’ ! ' md )
| S X
= — ——+ = Intan &
’ ﬁ 2 702
' - . . -4
oy dgn= a
= 75 + = {In1=Intan 3) _
N SR S
= o e — = Intan E
75 72 3
2 )
H T . 7 5.1.’_' -.'-:—3511’
) !‘ﬁ'" xdx = g6 4 3 3 350

¢) J‘sgc:‘odn = _g:_*.:[)_jl@_ﬂ___'_ -—é—-fsucﬂdfl

= —-—sccaz“‘"n, + -{,- In {seex F1anx) + ¢

ES) Hm=1,1,, =1, = fsin'xcos"xdx
: L R ’
Lo’ X'y cifn —1
n--1
—In Jeosx] + ¢ itn=—1 !
E6) m+n=0 => 'n=-m => misa positive integer.
’ T My
I =[sin™xcos™™xdx = | 20Xy = tan"™ xdx
m.n
; K cos™x : _ .
Now use (he formula for flnn'“xdx
w2 s . w2 BT
] L L [ T - L
E7) a}'fsin"xcossxdx = —%—'\-] + % sinx cos™xclx .
i 0 b
. wo - 1™ |
2 - < =2 cosfy
= = [smxeos xdx === - =
g o V% s ] 74
! {]
“"_" L afl =2
sy bl oo ensweinfy b L F o
D) JSIT X COSTXUN == mmi s TN Isin7x dx
" B 1"
-:-J{—‘ Jsin“x'(lx
| 0
. = .71, 53,3 1 . 7n
M s o 4 2 2 572
. " s
ES) WL, = !c"‘cl,\‘ = ‘“_‘ +e




E9) C, = &

b) L, = fc“" sinx dx = SUNE 'll J-C““C“-“Nd’*'

it

ax nx - P ™
= cUsiny | evicosx _11 ,‘c"‘sn‘.xtlx
. i i
. aetssing CNCOSN -

sinxdx = - "T.,_" - B b

14 a 1 +a”
' _ g

(asinx — cosx) + ¢

[+a2

cos™x + -@;—fc“‘cos“"xsinxdx
. 1

U e ey Wenen— Iyeiyx
= Lo 4 _11_1,1' c%0s"~ Ixsiny 4 -
11 ul

= L¥coshx + A0

AUX n I -l 11— . o
= BZe0S™® 4 b gerpnenleny 4+ DOZDc, - B
il

- C

% Jc‘“‘{(n-—])cus“‘_zxsinzx - cos™x} dx
c“‘cu-;“"-'“' +
m "'F » - OXRINX

I
a’

Al

(e"‘{(ﬂ —Deos" x — nees"s} dx

Y

I3 2 N

d -

= accos'x ™, netcost Wxsinx 4 o(n—1) ¢
n?+a? n A4l Coptar T

E10) Pula = 0inthe formula for C,,.- -

N -n:l H.
. : sin - -
--QFICDS"MM = CO8 XMOX "nI Icns“ % dx

n

which is the reduction formula for Icus“x dx

E11) I'sinh“xclx_ H'Isinh"*‘xsil'.hx dx

E12)

=, sinh"'x coshx = (n~1) J.sinh“"zx cosh™x dx

= sinh™ 'x coshx — (n,—-l)J‘sinh“’zx (1 4sinh®x) dx

= sinh" 'x coshx ~ (n=1) Li-2 = (n=1)L,

— sinh""gnﬁhiz _ _n—1

I, -
n n n-z

jcnsh"xl dx = chsh"‘ Tx coshx dx

= cosh" “ix sinhx — (n—1) ch)sh" Tosinhxods

= cosh™ 'x sinhx ~ (n—=1) Jcns:h“_l-.\' {eoshx—1) dx

= cosh™ 'x sinhx ~ {n—131, {n-—-i)I,., :

= roght~!xsinhx | _o—| |
. u .. N :I'J

Heduehen Formulan




UNIT 13" INTEGRATION OF RATIONAL
-~ ANDIRRATIONAL FUNCTIONS

Structure

13,1 Iatraduetion ’ a4
Capectives
132 Imegration of Rational Functions 84

Sepe Simple Rational Fanenons
Partial Vraction Decompostion
Method of Substitulion

13.3  Integration of Ragional Trigonometrie Functions ) o2
13,4 Integration of Irrational Functions . .95
PS5 Summary : ' 89
13.6  Saolutions ind Answoers : - 99

13.1 INTRODUCTION

In the previows unit you linve come across various methods of integration. This unit, which
i the bast one inthis bluek, will complele the diseussion of methods ot inlegraton in
this course. TTere we shall deal with the integrmion of rional funclions in derail. The
method. which we shail deseribe in Sec. 2. depends upon partial fraction dlecomposition
willy which you might he already familiar,,

Later onin the unit we shali cansidler some simple tvpes of Tirational funelions. Bul a
fudl discussion ol the integeation of ircalianal fenetions is beyond e seape of this
course. We end the unil hy giving you a cheek list of poinls ta he considered Detore
deciding upon the method of integration for iy piven lonction, While poing thraugh
this unit you will neerd to eecidl several stancdard forms like ) )

. ’ VxR ds ete. which we have aleeady covered in Unil 11,

Objectives

Alter reseeling s upit you shonld he able w .

& recognise propet isd uproper rational [towrions

& dntegrate rational funetoos o8 oviable by gsig the swibad o ratiad Do
® nleprate cerbain vpes of etional Tunelons of sing and cos '

o eviluute the infepruls of soome spyeilival (4pes o insional funetions

& decitle upon (e method ol integration 1o fie used Far inlcErating any given Lupelion.

13.2 - INTEGRATION OF RATIONAL FUNCTIONS

We know hy now that it iscasy o integrate sy polyaomial function. thad is. o lunetion
Fpiven by [Ex) = a " ¢y, X" b s g, In thivsectivn we shall see how a rtisnal
Nunction s inreprated. Wi let us firs defime aatiana looetion,

Definition 1 A funclion 1 s calleday ot furetionfinis given by R(8) = Q(x)P{x),
where Q) and P{xY are polvnomiab. [ detmed Tor alf y for which Pxy 411

LI VY OO o R V)
L N N R
Ay

Fistesa i e degioe of Poviowe sav an {0 is o proper rniona
function, Otherwise, it cadled an mpaopen cisonad fanetian, 1 s

T3 SRR S M orepet nrGonad fpeton, nd
L I
- A

glxy = X AXLD G, mpropen ane.

x—2
But gis) cinnalso be wrilten s

g(x'} = (i"l.’u.\‘!-h) 1 i-!_l {by leng division)




Here we have expressed g{x). which is an improper rational funclion. as the wm of a

* |I - ape ’n l - . -
polynomialand a proper rational funcion. This can be done fr auy imyproper ration
fupction. Tha. ., we can always wrile

. [~ ————— ——— .
S improper | A ppe)
- ratiopal = apalvpomin | ationa]
Tunction ! | e i
—_— e . e

As we have already observed. a polynomial cin be casty indeaiated. This means that
the problem of integrating an improper rational function is redices) ue thes of

integrating i proper rationat funelion. Therelore, il is encrigh 1o stndy e technigune

ol iategrating proper rativnal Tunctions, Hut firsi let's see whether vou van identin
proper vational funetions.
. ’ v

E . EI) Whichofthe following functians are proper rational functions? \Write the

impraper ones is a sum of a polvnamial and o jroper ttional lungtion,

Inberation of Ratinpplamd

Ly X XT+x—3 . X0
a) ——— ) S— L
XN x| XTAESER
. .

13.2.1 Some Simple Rational Functions
Now we shall consider some simple Lypes al proper rational functions, like
- l_ ] - and A=m __- Later you will see ahal any proper rational function
Al (k-1 ux—d-bx4c '
a0 e writlen as a sum ol these sianple tvpes of T, )

We shall iflustrate the methaod of integarating these functions throngin some examples,
»

- - . - - . ! - ' .
Lixample T The simpiest proper ratienal Tuncting jsof thetyyco- o From Unit (n,
{:

A i)

we alieady know tha

{(x—u)

I L s = 1 [x—a} -+ c.

Fre Sl ¥ oo tioms

e r by =

AT ETER e pRTEsL T




I ;
, (x+2)"
) To.integrate this function we shalt use the method of substitulion which we have studied
) in Unit {1. Thus, il we put '

Integral Calculus™

\

Examplé 2 Chnsjdcr the function [{x) =

du — 4 and we can write - o]
dx . . .

I —I-&- du =, Itl“" cu
u

. - — 1 . .

... . . T:)“'i‘c—m'l'c . | . i
- ' The next example is a little more complicated. ’
2x+3

x*—dx-F5

This has a quadratic polynomial in the denominittor.

u=x+2,

il

. j .-—_(.\:TI}Z)"' d_x

-3

Exarmple3 Consider the function [(x) =

2x+3 . . 2x—4 g '
Now | —==2—— dxcanbewrittenas | === . dx + | ——— dx '
v] R—dg+s ' P lx+5 f —dx+3

Perhaps yod are wondering why we have split the integral inta two parts.
" “The reason for this break up is that now the integrand in the first integrat on the
B'(x)
. Blx
!
f, g (x) dx = In Ju{x)] I <.
g(x}

rightis of the form ; imd we know that

Thus,[—-'fz--’fi dx = In x*—4x+5| + ¢, _ :
. x*—dx+5 :
To evaluate the second integral on the right, we write

e ml g

, .
P 1 -1 1 !
RS —_—dx = | — A —1_ 4

R . J’:-:z—thc+5 .. J’(xz— T L j (=21

Now;ilweputx—2 =y, %‘xl = land

" | j——l——dx = J—-,-,l—.du = tz;n"u-bcz

X2—dx+5 u-+1
o= tan~'(x=2) + ¢, :
ST £
This implics, . i
2x43 ; 2 -1 i
=X = In |x"—d4x+3] + 7tan" ' {x-2) +c. i
xP—dx+5 I | x=2)
£
In the bepinning of this sub-scction we said that any proper rational function can be j
written as the s of some functicns of the type we considered in the three examples :
) above. In the next sub-scctionwe shall see how thisis done. Bul Lry to solve an cxercise
+ before reading the next section. It will give you some practice in evaluating integrals of
the types mientioned in this sub-section. : ' . JL
E E2) Evaluac ' ' : !
N al r_g.}_t. hl f__£“ Y f__, .2;3_""] d ) { Ax+1 a
T 2%~ TSy LR TR J X2 x2
. .
56 .




.13,2.2 Pyrtial Fraction Decompaosition
- In school you must have studied the fac
.. know that
x2=5x+6 = (x—2) (x—3) :
Here (x—2) and (x—3) are two linear [actors of x2~S5x+6.
¢ Youmust haveulso come across polynomials like x™-+ x4 I which cannol b factorised
into real linear factors. Thus, It is not nlways possible 16 faclorise u given polynomial
into lincor factors. But any polynominl can, in.principte, be faetored inte linear and
quadratic factors. We shall not prove (his statement here. [0 is a cansequence of the
Fundamental theorem of algebra which has beenr stated in Unit 11 of the Linear
Algebra course. The actual factorisation of a polynomial may not be very casy locarry
- out. But,whenever we can factorise the deneminater ol a proper rationa) function. we
" can integrate it by employing the methed of partial fractions. The followinp examples
- will illustrate this method. ' .
5

x_l d - L} Sx_l T =z
X, Herethe inlegrand +5--= is i proper rational
X1 _L’ . X%~ pral

torisation of polynomials. Far example. we

Exampled Letus cGa,lunlcf
function.

Its c!cnbmlnator %*=1 car be factored into lincar factors as : x3—1 = -1 (x+1)
ax—1
l

]
l'.:"n_

This suggests that we can write the decomposition of into partial fractions as

Sx=l o Sx=1__ _ _A _,._B

x2—1 (=1} (x+1) (x—=1} - (x+1)

If we multiply both sides by (x~1) (x+1), we ge;

Sx—1 = Alx+1) + B{x—1). That is, ' '
“3x—1 = (A4+B)x + A-D.

- By cqualing the cocfficients of X we pet A+B = 3.

Equating the constant terms on bath sides we get A-f3 = 1,
Solving these two equations in A and Bwe gel A =2 and B = 3.
- Thus, 2X=f = 2, 3

x| x—1 x+1
Integrating both sides of this equation, we abtain,

j-{—}ff—dx = jx%dx 5 jx-?—l {0

21wjx=1] + 3 li+1] + ¢

Integriving of Ratinal and
treational Funetinns




fuicral Cateulus As you have seen. the mostimportant step inthe c\';llunrinn'nt'J -:—}E—IL dx was the
‘deconposition ol the integrind jn1o partiat tractious. ihe Pracedure for inding the
values of {he twa unknowns A.nnd B, invalved two simple simultaneous equations in -
twa unknowns, But the higher the degrec of 1hie denominator. the more will be the
number of unknowns, and i migiit be very 1edious ta find them. What can we do in such
cases? There is a very simple way out.

In the equation
5x—1 = A(.\+|) + Bx—1). il we pm x=-l,wepel —6= =2R or [} = 1, Simitarly,
ifweputx = 1, we getd =2A ar A = 2. 1sn’Lthis a much simpler way of finding A and 37

Noto that | nnd ~ | are the zerosaf ., 1-CL'S goonto our nexl eximple now,

e it & i .
the denominglor x* - 1. Exanple5 Suppost wo wint (@ inlegrate -2 -"‘ hx 24 )
. x-x?-2x -
We fivst observe that the-denominator faciors as x(x-+ I) (x=2). :

Lo ' Tlusmbanswcc.m write
2x-+>.4=_A_+B_i_C ;

X —xT—2x X x4 x—2 1

. Multiplying by x*+=x*—2x we get .
245 —4 = (xk 1) (x—2)A + Bx(x-2) -+ Cx{5+1)
. T H . . e H 1c 4 T .
0,1 and 2 are e Zt:ms\m _ Now, il we put x = (in this equation. we pet
gt —2x, o -4 =-2A or A=
Putting x = ~1 givesus =3 = +IR . or B = —|.

Putting x = 2, we gel 6 = 6C, ar { = 1,

Thus.jM dx = Zfi dx — ] (-'LI iy b ‘.—\—l_-f ¢Ix

X' —xT--2x

= 21In|x| = In|s+ 1} 4 In}x—=2| + ¢
-Ournext example illustrates he use of this method when lhc denominator has rcpcmcd
|I11L’ll' faclors.

- X
: Example6 Take ulook at the denominator of the integrand in ; dx,

v'-Axd 2
It faotors into (x—1)3(x+2). The lincar tactor (x~ [} is repeated twice in the

. decomposition of x*—3x--2. _ 1
in this cnse wo write :

X - _A_,_ B L, _C ’

X=3R2 Xt x-T T (Y

from this point we proceed hs before to find A, B and C, We pet
Cx = AX-DT+ B(x+2) (x 1) 4+ C(x-2)
Weptlx = lindx = =2andpet C = Hiand A = 9

=y

Then to ind 15, Jel us pul any other convenient valie, sav 8 = {1,
Thisgiveus 0 = A - 28 420"

o0 = 2 -2B.4 3.

This iseplics B = 2/2. Thas,

N =i AR I
_— iy = =2 -l 1 - T |
: ";‘*1\-.7 L N s ATV I A S | o
2 Inlad- 2 - hix—1! - b Il ) bt
- i
2 x—1 ] i
! = Zn |2 - — g
0 k2 Ax-1)

Inour nextexample, we shall consider the case when the deniominiten of the integrand
coniding an irreducible quadratic ety (i.c. a quadratic facter which cannot be fariler

88 Fuctored inlo linear Fetors).




Example 7 To evaluate

o 6x*=11x24+5x—4 .; o

x1—2xM4x2—2x
we factorise x'—2x*+x*—2x 0s X(x=2) (x” -t 1). Then we write
6x3—11x2F5x—4 _ A B i)

_Examplc8 Letus cvalunlc[ 2

X 2x3 4 x%-2 X | X—1 N
Thus,
6}[:‘_11:\'2'{“5:'(_4 = A(X—Z) (x2+|) + BA(.\:?-F- I) 4 (C.\'-!—D)x(x—-z)
Next, we substitute x=0and x=2 to el A=2 and B:1.

Then we put x=1 and x = —~ 1 {(some convenicn values} togel C=3and Y = ~1.

Thus 6x3—1ix3+ 5% 4 da = Zf-i— dx 4 j LI PR ) Sl clx

iy o IP I, x—2 x4 1
- ') . -
= 2 h1|x|-l- ln|x-—2! + —.}— —,;L- dy - J—Td'}—-
O S T x|

It

2 Injx|+Wnjx~2] + ;— lalx*- 1] = tan” 'x 4 ¢

Thus. you see, onee we decompose our inteprand., whicl s i [prroper ravienal funclion,
imo partial fractions, ten the given integal can be written as 1he Sum ol some inweprals
of the type discussed in Examples §. 2 wid 3.

All the functions which we integraled till now were proper rational fungtions. Now we

shail take up an example of an improper rational function.

al
—'\_-j-_gx_dx.
NT—x—2

-Singe the integrand is an improper rtional function, we shall first write it ns the sum of
. wpolynomial and i proper ratianal function.

Thus )
x3-2x =x+]+ 5x+2

]

x=-x-2 o NPex=2

. et e
Thcrcl'orc.f X-b2x dx f.\-dx - fdx +J -_-,51{—-’-— dx

2

|

R°—x—-2 XTe-x=2
xZ X 5542 .
= —2‘ Iox - J’F_.;_—:} ll\
o Sx-b2 el
Now let us decompose = o imoe partial fraction as
XT—x-—2 .
Sx+2  _ ax4-2 =_A_,_B
X=x=2  (x=2){x+1) X=2  xII
5%+ 2= A{x11) + B{x-2) .
Ux= =1, weget =3 = <383, (hatis. B = |.
IEx=2,weget )2 =3A. thatis A = 4. .t

X2 . dy [ dx
Tl1crcf0rc.fm‘lx‘4.[ =2 "R '

= 4 fx-2f 4 a1 < ¢

X gy = x? N N L P P YR I N T -
_.x-.--j— X oq ['IX_IFII.\ H T,

Try to do the [ollawing exercise sow. You will Gnd thint each integrand fatls in oo of
the various types we have seen in Uxamples | o 8, ’

13) Cvaluate

"2 Al T A
i) J--;——— dx ) J.—-—;---\-t—-}---:- ) e
N2y - 2K 3 S

Integrsiinm of Rutionel wnd

Irratmsnd Fanedinns

N

e e E ey
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. 13.2,3 Mectheg of Substitution - ' trteprationof Ralimal and
The method of partial fraction decompasition which we studied in the last sub-seclion et

can be applied to all rational functions. We can say this beeapse as we have mentioned _

earlier, the Fundamental theorem of algebra guarantees the laclorisation of any

Jpolynomial into linear and quadratic factors. But the actual process of factorising a s

polynomial is sometimesnot quite simple: In such cases it would be a good iden Lo

critically examine the integrand to check if the methad of substitution can be applied,

We will now give two examples to show how we can sometimes infegrate a given

-

rational function with the help of a suitable substitwtiorn.
lfxﬁnjplcQ Suppose we want to integrnte ——(—-,;I-ﬁ)— wilh respect ta x,
Ry

dx _ J’ x4 dx
x(x*+1) X (x*+1)
Nowlet uswritex* == t. Then % = 5x*.

e j xdx_ _ if dt
TR+ S (1)
: 1 !
5 I[T ~ Tl
1

For this we wrilef

+.c

i

(+1

X

X +¢
X4

=-%-ln

Cx2—1
Kkx2+ )

x?—1 . (1=-1/x?)
f xtx2+1 d = f X2+ 1+1/x2
Y LI

L U1

| 1 Example 10 Let usintegrate W.rt X

dx  (division by x?)
Y

dr

*=—1

ifweputt=x+ ~:—(-

I

I

(ke oty
T

+c

1.0 =
7[R

- .
e Lin } x2—x+1
i
' , XX+
‘-In.Examplqg 9 and 10 you must have noted that the denominators of the integrancs :
' were not casily factorisable. The method of substitution pravided aneasier alternntive. -
See if you can solve this excrcise now.

E  E4) Integrate the following functions w.r.t. x

2) Xzl oy _Lx?

Thxt o o LdxPext

"9

T Y BT




Inteprat Culeulus

The exercises in this seclion have given vau u tur amound of practice in integriving
rational [unctions. In the next section we take up the case of rational rigpnometric
functians,

T e P T et e

13.3 INTEGRATION OF RATIONAL TRIGONOMITYRIC
: FUNCTIONS

You know that a palynaminl in twe variables s and vis an expression of the Torm
vk i
p(x‘}r) = E Z By o 85V o € H.

nualy iy

Accardingly, a polynomial in sinx and cosyos o expiession of the form
Biy, a !

L I
P(sinx cosx) = }J L T TN NI

ol m-

The integration of Plsiny. cosx i can be carneg enteastiv o we bave aheady imteeided
sin™x cosx in Unil 12, An vxpression, which is the ratio of two polynomials.
P{sinx.cosx) and Q(sinx, cosx) is called a ratinnal function of sing and cosx, In this
seelion we shall discusg the intepration of some simple ngionad imetions in siox aomd
conx. We shall first indicite o gencial method formtepnating these tunetions,

Lel {(sinx, coxx) be a citional tunction in sina and casx. The litsl steprin the evaluation

g3 oftheintegral of fis to make tie substitntion Lo 5 =L




. . - 2 - ” Integectlan nf Rarimml yne
ThlIS, —3')%- = -%— S(.‘.l'.:2 —3- = ‘1_51— Treatlonn! Tunetions
2tan X
. . .y 2
Since sinx = 2sin X cos X = 2 - —“-l—z
) 2772 >
' I—tan? & ‘s
and cosx = cos32. — sin® & = _2 =l
2 - sccz _E‘_. l II-
2
we pet,
C {2t 1-2) 2
f(sinx, cosx) dx = I(—-—-—,,,-—-—,,-)——-—,—,—d[
.f( ¥, 60 ) _ f 1+ ¥/ T3¢ )
=‘J.F(t)dt, . -

) - 2t 1-¢2) 2
where (1) = f ( 1+¢2’ 1+11) 1+
isa rational function of t. Now we can use the method of partial fraction decomposition
to integraie F(1). In principle then, we cin integrate any rational function in sinx and
cosX. Butin actual practice we {ind thar the vational function I(1) is offen complicate,
and it is not feasible 1o apply the method of partial fractions, 1n this unit, however, we
shall restrict oursclves 1o a few simple rational functions only. :
1 -

Example 11 Let usintegrate TTboom

Now a+bcosx= a(sin? —% +cos® 33 + blcoy? & —sin" )
= (a-i-_b)c_osz-;f,- + (a—b)sin® -i"-

X
sec?2 gy
2

a+bcosx

Thereforc,f—ﬁ-—- ='f .
: ! (a+b) + (;l-—h)l."mz—a.-

J’ sect X gy
’ ' ) = a-+b 2 X
(a—b)[ + tan? 2]

a=b ~J

Ifwe put tan —3— = t, we got

f dx . _ 2] dl
.:i+|.'JCDSI (a-b) (i]lfs -Hz)

w2 | dt
a=b | atb
] Y ol

Ifa>1b>0; then gj}; >'0,and we get -

awb)

2 t
a+bcosx JaropE ( ¥ atb

il

—i a~h X
tan ( \m lan 2]

2
Jar—p¥

[0 <a<b, then-1£b < g, g

—

[- dx_ _ 2-..}11 bta + fb~a

e N (wardiY wad) ) ,
-.-Q- 1 ) \/m o b-Fu' {an -,E—
JB2=a7 SO — SO an -,’;-

e

L EELL B T TE e —




Iategrol CBT_CI:HI.I.'E. .

I + cosx = 2 cos?X

X

sinx = 2sin Ec. B3
. = 26083

94

2.

E

Example [2 To cvnlunlc[-—-ﬁ-—-—u—. I+ sinx dx, we wrile
vt sinx(14-cosx)
J’ -1 4-sinx - J‘ " dx
sinx(1+cosx) gmx(1+cm) 1+cosx
' =1fq__£x__+'_l-[_gw_ﬁ
" . B N
¢ sin = cos® = ) o X
. 2 2 2
sect 2.
] 2 ) 2 N .
=7 — dx A 7-,‘ sec -Zch.
2
1 1'+ N
=5 (mn-z— =1)
_ 1 ]
—7[J d[+J|dt] Idt.
- L 2
3 [In_ltl + 2] +.! + c

- 1+ sinx . 1 I 2 X X
Thus, | ——————dx = = Iajtanx/2| + —wn°5 + tan5 + ¢
fsinx(1,+cosx) 7 0l I+ 3 2 2

Now proceeding exactly as in Examples (1 and 12, yci: «an do these exercises.

dx
ES) Eva]ua(c[ AT DsIng
1
- . 1 __LOSX
EG) Intepgritie a) FT500% b) G WL X

Lo

e e




i

(1+1%) (146t .+(“)
Now1+6:=+| —(3+f 8+13) (3~ /B+1Y)

By thisstep you will realise that itis going ‘o be a tough job, But don’t worry. There s
an easy way out. :

] . ;
l ln(1+sin2x) +c.

3y now you have seen and applied many di ffere:.: rmlhods ofintegration. The crux of
the matter lies in choasing the appropnate method for i mlegratmg a piven function.

' For example, suppose we ask you to integrate the function S‘—T-@ Realising that
n’x

thisisa rallpﬁa[ funcuon insinx and cosx, you may put tan X

dx, lfwe make the subsutuhon l1+sin’x = 1, we gat

Thus, the cho:ce of the methqd is very crucial. And only practice can heip you make a-
, good chou:c« o

~We shall now lllustrate sbime techmques ised in integrating 1rra(10nal furfrc:uons

= Land proceed

13. 4 INTEGRATION OF IRRATIONAL FUNCTIONS

thatis, |tlsn0‘toftheform P

Tisiask v iniegrating funcrions gel.s Iougher ifthe given funcuon isan irrational one,
-. In this'section we shall give you some tips for

evalualing some particular types of irrational functions. In most cases our endeaswur
will be to arrive at a rational function through an appropriate substitution, This rational
funclion can then be easily evalualed by using the techmqucs developed in Sec. 2.

I} Integrat:on of ['uncthns contammg only fractional powers of x :

“In this case we put x = t", wherc n is the lowest common muitiple (l.c.m.) of the
denoininaters of powers of x. Thls substitution reduces the function tof a rational

. Integration of Ralional and

Irrational Functinns
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function of t.
Look at ihe following example.

T2 12 o 30

Example 13 Lcluscwﬂunth = i dx.
L1

We put x = t5, as 6 is the Le.m. of 2 and 3, We gel

212 + 3x\8 2 -3
=6 5t
I 1+h“’3 J ‘I_ '.'
g 2 g [21‘-4-1 Sapl =384 2123 -2 3“3]
(f g (f 3200 -2 e
= Lo _ 25 _ 328432 9-3 o an~"
6[ t+21 3 4(+31+2t 2 2In(l-|1)+2|-m I]+c

= —l%xm + 3x — —’52— xm‘ - -:‘: X a1 ot - 1™ — 9 [ x" &

2tan ' x" + ¢
1I) Integral of the type S
. JaxTthxeke
Here we shall have (0 consider two cases @ (1) a > Ound (i} a~<(,
In coch case we will try to put the piven integrand in a form which we have already scen
how to integrate.

) a>0

J N SRR S . S J _ dx
x nxz-l-l_)x-l-c NE VxSEhafaeh Ju \f’.(x-i-l:,’zu)z - ofit = bdat

If we put { = x-+b/2Zu, we get
dx -1 ( dt L
V ax*+bx+c \/T b3 (ofa — b
This is one of the standard types of integrals listed in Table 3 in Unit 11, and can thus
be evaluated.

“if) a<0: Ifwe put —a = d, then ¢33 0. dindkwe can write

dx L] l’ . dx
Jaxtabrre  JO ) S 5 0 - - bi2dy

Jd N (ud 1 DA = 1
This is again in one of the standird forms.,

_— J e M s xebd

YII) Entepraiton of. ’ .
(Fxe) o/ ax®ihx--e

We willillustrate the method through an exampie,

s '
Gxample 13 Suppose we want toevaluate | o - A
(n-i . w e
Letuspui x-HE = Uy Phen -1 i:J\ = |
. Ll

 Now we will Iry 1o express xPdx4 2 Hi e al v,
TFor this we wrile '
X dx A2 = (1Y 4 a1 -

ik '.!\.-_._Y..




: IV)'lnleg_rntion of

f (Ax+l3}dx - AI (20x4-b) dx (21\13 Ah)J‘
20

IThQ[cforc‘ A —-1 d . i ’ Integratkan ol Halsal wml

_[ (x+1)vJ 2+4x+ j_ +2!—y JJHZy y?

el Frnelions

}'
_J. dy _ cns"(y"f)
ve—(y-1)? J2

cos™! [-——--——-—"" } + ¢,

y (K'|' l) \/:2'_

This example sugpests thot in liitepruting J . we should make the
- (fx-ke) ax®kbx+e

substitution fx + ¢ = -1, and then simplify the expression,
Let us move over to the next type now.

{Ax+B)

 nx*+bx+e

We break Ax+B into two parts such that the {irst part is a constant multiple of the

" differential cocfficient of ax +bx+c that is, 2ax + b, and-the second part is
mdcpcndcnt of x. Thus,

Ax+B = (21x+b) +B - -&,? and

v ax3+|{>x+c Vi u.’ t-lm +C

21 "'Ah
= % Vax?+bx+c + ( _'132'] ) j d
: ‘ A axtkbxdc

“ax?-+bx+e

Evaluation of the last integral has already been discussed in ).

V) Integratlon oi’{Ax-l_-B} Vax? by +c

We break Ax+B as we did i IV}, und abtain

B Examp!t- IS To cvalualc

' j(m:+B) Vax? +bx+c dx = 5 f (2.|x-i b) vax*+hyde dx +

MI Vaxt+bxkc dx

2
= A (ax2+hx-| c]"r1 MJ v albx-ke dx,

We havc ul-chy secn how to cmlu.nc the imepral on Ihc. r:ght hand sidle {sce Sec. nl

" Umt 1.

Lct us usc these methods to solve some examples now.

x3+2 ¢

< 242%43

- wanotethatx+2 = -2- (2242} 4 L and write

J' '(x+'2).dx 1 J (2x+ 2)dx

_.J_ _xz-l-2x+3- B ,2‘ R+ J' NE< +2>.4

3 1% .
V243 [ e Te——— = T
: f X7 2x43 RESE AL Jxrii+2

N s x4
x“+2x-+3 + sinh (—) + e,
. A7)

I

L i LT ST R




e -ln-ll:gr.llt::llrnlu\

sTEIRAS
f’“-l}i-l

~we n_‘otc lhnlx:+2x+3_= Xk xtian42 = 80wk 4 -é— (2x-+1)+ -:;'—

I\amplc 16 'Inwlhmlt. , —dx

. Hence

T (%24 2543 ’ U
Q(Ix f\f\+\-!l(lx+—J‘ (2x I) dx
X x4 1 N

J .3. j__L_-

[}

4
.=J.\ é—)+ d\c+\f"'+x-i dx
We Ih:wc used [wo resulis [rom -+.% [n_j_i, (x+_%_ 4+ VX2 )+ ¢

Unit 1 hcrc. '
) ey
(i‘.‘::_‘_il)ﬂ . (x+_.

Iﬁ . . - = v‘x2|x+ +31n 7—‘(“1'*'\"‘:2'1"'4')

und .
v IJ':’+u-dx-‘=|Ell.x-'-!-u- . v o+ x2+>:-f-l + -%- In -—%.f(h'l -%- + x5+ c _
._‘__n_? InI(M)+¢ . I - v . R
2. L@ = —é— (2x45) VxIx+1 + —‘éiln'-—-l; (x+% + Jxex+1) 4.

.\ -

Sce, if you can solve this exercise.
E E? Integrate the lollowing:’

.a) :___[x_ h) —- !
L+ D(2-x) S22

98




“When you arc i’accd"wilh A new mtegrand, the lollowing suggestions furnish a thread
through the tabyrintli-of methods. .

(1) Check the integrand 1o sec if it fits one of the patierns

fd
Yduor | &Y
Jureuor [ & | ‘
(2) Sec if the integrand fits any ong of the/palterns abtained-ky the reversal of |
; differentiation formulas, (We have considered these in Unig 1.

(3) If none of these patierns is appropriate, and if the integrand is 4 rational function.,
" then our theory of partial [ractions enables udto integente il.

{4) Ifthe integrand is a rational function of sing and cosx, and simpler methods of

previous units fail, the substitution t = tnn% wilt make the inlegrand into g rational

function.of t, which can then be evaluated.

(5) Iflhcihtcgl_'andisarﬂdicn_l ofoncolthe forms /n?—x?, Jals? Vxiea?,

then the trigonometrle substitutions x = asin®, & =acosd or x = asecl will
reduce the jutegrand {o n raflonad funetion of sin0 and eoso. (f ihe radlicat is of the

form Vax?+bx-¢ , asquare completion a(x 07202 + c=b*¥a  will reduce it

essentially to one of the above radicals.

(6} Iftheintegrandis an irrational funclion ol'x, try to express it as a rational funclion
or an integrable radical through appropriate substitytions.

(7) Inspect the integrand 10 see if it will yield to integration by rrts,
Finally, we would like to remind you again that a lot of praciice is essential il vou

want to master the varicus techniques of integration. We hirve atready mentioned
that a proper clioice of the method of integration is ihe key Lo the correet evaluation

of any integral, Now let us bricfly recall what we have covered in 1his unit,

13.5 SUMMARY .

.Y N,

In this unil we have covered e {ollowing poinls :

1 Arational function fof xis given by {(x) = PGIO(X), where IP'(x) and Q(x) are
'polynomials in x, It is called properif the degree ol P(x) is less (han the depree of
Q(x). Otherwise it is caled improper, '

d . ) - . . - .
2 Aproper rational expression can he resolved into partial fractions with linear or
quadratic:denominators.,

3 A rational function can be inlegrated by the method of partial fractions,
4 . Integration of a rutional fuuction of sinx and cosx can be dong by putting t = tan =

5 Integration of Irrational functions of the igllowing types is discussed.
i) integrand contains fractional power of x,

i 1. 1.
i) —=—m i)

' Vax24-bx+c + (fxe) Jax?+by+c
H N AX+B - 7, -
iv) 241D v} {Ax+R) Vax2ebxtc

' W ax24-bx+e

' A cheek list of points 1o be considered while evaluating any inlegral is piven.

13.6 - SOLUTIONS AND ANSWERS

i1) a)and cj‘arc proper.

;2
by XEX=3 g x4
;) X+ X2+

d) XS 3 G 2410
x-2 L x=2

Inlegralioi of Ratlanal an

.

Irratinnal Funclim
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o dy  _ | 2l
E2) @) | 53 =7 =3

1. 19,
= 51:1 x — 3]+ ¢

- =1

di
=5 T

- b)ﬁf (1-+5)?

2¢+] 2x+8 dx
I 2t gy = | =2 e— dx =7 3
)Ix7'+8x+l Ix‘H-SxH J XEHBxH]

c

Injs?-- 8x + -ll_-_'7 j ﬁ;\_lg‘

I+ 8x+1|—7 I _“_—uzdul‘i , i =x+d.

Inlx? 4+ 8x+ 1] ~ 2:;—]3 In

"

-u"‘m|+c
u+ . J15 |

Infx2 4 8x + 1 - 2\;1—5 In

Ay +1)—
:x+1 d = 22x+1)~1 |
x24-x+2 x24x4-2

=2 I _.M dx - J‘_?'dx_
X2+t XoAx-A

x+4+4 J15

d)

.

2 In[xz+x+2| - I — 7
: (x4 3)* 5

2 In|xP4x42| ——2= tnn"( . +m) +e

ﬁ

L 2 f 2x+]
2 In|xlex+2| ——L tan” ' | <X +c
. 7 J1° -

Y

E) 1) o2 = —2 = A 4 B
) xT42x  x(x+2) % x+¥2
k=0 = 2=2A = A=
x=—2 = 2= -2B => B=-I
2 .1 1

Cox242x & x+2

" f xz-EZx dx = J‘%.(Ix - J’T:-*?h dx

_ I_ : -O= .—.-3.—- -‘
= Inlx|—In|x+2|+¢c In| 33 I + ¢

A B

Y X - X = .
) P2x—3  (x=3) (x+1) x—X  xFj

— AfrllY L v )
S-Sl R

x=—1 == —l=—d = N= 4

S i s

e Al — 1 .
= 4ln|)f 3l+ dln|x+1{+:.

x+4——./ﬁ e

S romra




_.;c) .x';j:;;_lfl 5= '(x+3;)-(§3_2) =—fs i e
LR - 13 A(-2) + B{x+5)
X=1'=» ~7=7B = B=—|
'X= -5 =2 ~28=wTA = A =4

x-13 dx = 4f-_dx_ _ [_dx
x2- |-31~ 0 x+5 x~2
4 In x5 = o {n=2| + ¢

=]

dy—OX422x-93  _  Gx2idon-23 A B _C
(2x—1) (x*+x—6) x—Ty (x+3) (x— 2 =T x+3F T -3
6x7422x~23 = A(x+3) (x—2) + B(x—2) (2x-1) + C(2x= 1) (x+3)
x—2==>45-—-l‘iC=bC 3 -
X=-3 => —35=35pB S Bo o

x=1/2 ==";22'l=":712_l“\ = A=32

: 2970 . . .
. j Ox2+22x-23 dx = —éln [2x—1] = In jx+230+ 3 1 =21

(2x~1} {x"+x—6)
T e) _23):-‘ - 3x—3+q_9“\_(!—
X“+x~2 K452
. 23x3 = -.'..‘. - %2 | -
x f?:.;:a"" =[x s Fim—g |
= -3’2‘_ = 3x + 8ln|x+2| + fx—1]+ ¢
f)'. X24-x = | A _| Bx+C

(x-—l)(x -x+l) =1 iyl
k=] = APy 1) +(Bx+C)(x—l}
x—- [ == 1=A
. we have
X2t x= =iy o+ [ 4 By +(C-Bjs - C
Thus I =14 B (Coeflicienis of x%)

.B=0"
Also, =1 =1-¢ (constant terms)
T C=2 .
T )
f_._X.ﬂ__l,_d\_f dx ,2jﬁ
: .(x-—I)(x*—xH) X —x+I
= Inlx=1f+ S an~r 221
\I’.! \f."

) X'L—-4x = Ax-[- B, _Cx+DD
(x2+])" - x2 OP1)?
St = 4x = (Ax 4 B) (3. )4 Cx + I

XSy = Ax® 4 B:g_z FAHC)x 1 t))
L A=LB=0.C=-5n=0

L A . T x !
.- f—.x__’.ﬂ._‘_ dx = f__':.?f_- dx — 5 f _Tl“_, s
(xH1)? Sl ‘ WwTHTY 101
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= 1 2 3 l
. = 2 dn (x4 1) + -
A vy
o g - L ’
a_ - . 2
E4) a) [ X ’dx=f-————-’5—dx
T ex R
2 3 X
L w
1 — —
=j’ X dx
(x+-=)* =2
O T T |
Jt’—-z i ;H' ¥
I R v :
= n c
22 X+ -l- L] 2
X
- i -12-+1 .
b) j—-—l--l;-’-(-—-a-dx S [P S—,
l+x +X : L_*_ ‘ + x?. ' °
.ox2
Fli. 41
= f X I <x
(x==)+3
dt . todt _ |
_ 1 1] 1 1 -
= —— lin —~—~— X = = I- ¢
T s - )
* , — -1f x%—1
{an +
7 (ﬁx ) ‘
dx _ 2dt - ’
ES5) fﬂ+hsinx = I:l(l‘i'l?") T3 ift =tanx/2
v - - J' 2d1 - .,f dt
. ] - 21,2
. at“+2bt+a (ﬁl+%}zf{“ﬂb)
_ 2 —l(‘ al+h ) -
= tan. +c
Jad—b? J =3
: X
.o atun = 4 ¢
= 2 jan™! ( 2 ) +c
PYIT] JaE—p?
. o dx _ ull
EG) «) j 4+45casx 2[ _ ¢ 11
S xH—:\( ,” (1-+1%)
R ST '
_of dt Lo
. 7 444t 45512 7 g—y?
. = -.I,—'In ﬁ-‘—! +c
W .—l.| . !
1%y .
h]J' COSX - o (I-H?) di
2—cosx - " _ (,,]___'i) ] (14-1%)
{ 412
. - . ) [—te.
. = 2 —— e
102 B . l[?(!'l'")" —_ I"l'lll




] 12 dt : Tniegraiian af [tntlonal and
' Irro | Fun.
('_2.’. 1) (312+ 1) ] tratlonnl Funcitnns

——

Ifwe write ——J—t = A48 | C1+D
(1) (32+1) £+ 34!

_then 1-1% = (At + B) (3t+1) + (Ct + D) (1%+1)

“" 1=B+D - (consiants)
0=A+C (cocfficients of t)
—1=3B+D  (cocfficients of 9)
0 3A+C  {coefficients of t*)

, A=C'= OB——ID 2

dt

", Answer = =2 —_— .
' I"-H T -

~2tan~Mt) + -4 tan~'(J/31) + ¢

7
= '-—2%+-—j?la'n"(ﬁl:m %) +e : -
' = =% +%lan"(ﬁtan Ti+e
E7). a)f \/_ = [{Eava = Yz
= 4Imdt

-__,. z_l_,__l :
4I-t PetZ—tq ] m]di

& 4 3 2
= 4[%-L+-t_-t_+t-m|.+n]+c

4 3 2
= o X s, xM ‘(”" 1A
= 4- i 7+ X — In|x +1|}+c
N . 2]
1 dx | o .
b) u12 X Then — = — ' s
f(z"x)v‘ 1=2x+3x? g CONT

. _ dx '
f(z—x)m. . j @=x%) /30252 - 10(2—x) + 9 N

J t g
g
r

J'l—:im Pio !

vi-3 .
el 9 /1. %
-f—j-smh -—j_z—(z_x 9)-{ c
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Solution of E8, Unit II

i) sin™ (—;“) +e

if) . . cosh™ (%) +c

H - ] H — 1, L ——-—-—d[ — ——!— -I =
| 1ii} - Patting 2x =1, \u\t.-. gel 7] fl i) tan " 4 ¢
‘ " ' .. ' o= —;— tan™ (2x) *c .
_ . _ iv) <L x /—_f:'— +c
o
v) Purx’ =y, thcnf dx =-—é—f d -%co':h 'y +e
R ] v )'1— 1
= -%-—- cosh™ (xY + ¢
- 3
vi) L (en” ("'[4_') t+c
12
' A
. 1 . = (..l.'l_
vu? -T sin 2/ +¢c
viii) - i (x—1)+c¢ (asin Exmnplc_lB), ) oot
ix) ! = 1

axs st \/_1;_.;.(; .;.le..)z'

Lei x + -%- =y, Then the given inlegral is

N 2y e [ 2x1 '
sinh (Ja—)-lc-—smh (‘{3— )+c

x) cosh™ (—-y;—q) e
" xid Yox— an” x +¢

dr

v by P
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BLOCK 4 INTRODUCTION

{n this block we shall look at some of the applications of the concepts studied in
the carlfer blocks. We have afready studied some geometrica) applications of
derivatives in Block 2. Here, in Unit 14, we shall siudy some of their applications
10 the theory of functions. In particular, we shall establish. some inequalitics. and
calcuiate the approximate values of some functions at same points.

e e e ———— s = e

We have mentioned in the introduction of Unit 3 that the problem of finding 1he
area utider A curve partiatly led 10 the invention of Caleulus. 1n Unit 15 we shall
sze how the concept of 2 definite integral can be used 2o find the area under a
curve. But area is not the only thing which can be calculated by using integrarion,
You will see in Unit 16, that the concept of integration can be used {0 calculate
even the engths of some plane curves. Alter reading Unit 16 you will also realise
the usefulness of a definite integral In finding the volumes and surface areas of
solids of revolution. -

In Block 3 we have seen varlous techniques of Integration. Bul still, there are some
functions; whese antiderivalives cannot be written in terms of any of the known
functions, no matier which technique we use. In spite of this, we can find
approximate values of the definite integrals of many of these functions by using
numerical integration. We shalt study two methods of numerical integration in
Unit 15. These aleo come in handy if we want to find the definite integral of 2
function whase valuis are known oaly at some specific points.

With this black we come to the and of this course on celculus. In this course we
have dealt with functions of one vasiable oaly. You can study the caleulus of
functions of several variables in the course tilled Advanced Caleuins.
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(i this unii - - ce some immediaic applications of the‘concepls which we have
studied in Blocks 1 and 2,

Differential Calculus has varied applications. You have already seen some
applications 1o geometrical, physical and practical problems in Units 8 aitd 9. In
this unit. we shall study some applications to the theory of real functions.

There are some questions in mathemarics, that can be asked even before knowing
differentiation, bul can be solved with ease by using the theorems on
differentiation. In ‘other words, differentiation is a useful tool in solving problems
that arise independent of thit notion, for cxample,

a) Is the function sin X +cos x increasing in [0, x/4]?
b) Do we have the incquality ¢* > 1+x for all x?

c) What is the limit of

when x tends to 07

sin X
d} What is lhe approximate value of cos 1°?

Do you notice that these questions do not involve any concept that you have not
studied earlier? You could have asked them earlier. You could have even answered
some of them. Here we shall gee how the theorems of Unit 7 can be systematically
applied to vield solutions to such questions. Keep Block 2 ready with you since
you will need to read the relevant portions from the units in that block.

Objectives

After studying this unit you should be able to:

@ recoghise the equivalence of some propestics of functions (fike monotonicity
and positiveness or negativencss of its derivative),

® prove some inequallties nxing the mean value theorems,

e apply Taylor's series 10 obtaln approximate values of certain functions at
certain points.

In this section we employ differentiation to decide whether a given function is
monotonic or not. '

First we recgll some terms from Unit 1. We say that a function from an imewal 1
10 R is mondionic if it is either an increasing function on I or & decreasing
function on 1.

I is said to be an increasing funclion on I, if x < y implies f(x} = £(¥). Increasing
functions may also be thought of as order-preserving functions.




Applicntions of Calcalus

Tet us als.  call thas

cver: constant function is an mereasing funciion,

the identity lunction is an mwreasing function,

the function lia) = 2x =3 15 an increasing Nynction,

e lunchion [{X}=sinx is aol an increasine “anction on B,

This is because even thoush & < Jx-2 we hne sin 0 02 -1 sin 4.:2,
However, on the interval {0, /2], sin x is an inzeeasing Cunction.

Further, we knoe that a tunction f fiom | e R s said o be 2 decieasing function
if x = ympliec K(x) = ({y). Decressing Munctions are the Order ey erning
functions. :

Here are some examples:
@ The function f(x}=4-2x is decreasing.
® The function f¢x)=sin x is decreasing in the interval [#/2, »).

Do you agree that each constant function is both increating and décreasing?

Waraing: It is incorrect to say thal il a function is not increasing, then it is
decreasing, it may happen that a function is neither incressing nar decrensing. For
instance, if we consider the interval [0, =), the function tin x is nelther increasing
nor decyeasing. It is increasing en [0, x/2) and decreasing on {#/2, w]. There are
other funclions that are even worse, They are not nonotonic on say mib-Interval .
also. But most of the funetions that we consider are not so bad.

Usually, by looking at the graph of the function one can say whether the function
is increasing or decreasing or nelther. The graph of an increasing function does ol
fall as we go from left to vight, while the graph of a decreasing function does not .

 rige as we.go from left to right. But if'we are not-given the graph, how do we _

decide whether a given function is monotonic or not? Theorem 1 Pves us a
criterion to do just that. :

Theorern 1: et § be an open interval. Let f: | — R be differentiable. Then
a} I is increasing if and only if '(x) = 0 for all x in ..
b) fis decreasing If afa only if f'(x) = O for all x in 1.

Proof: 2) Let f be increasing. Let x € I, Then, -

f )= :.iTo fi(x + h:l- f(x)

Siace T is increasing, if b > 0, then x+h > x angd {(x+h) = Kx).

Hence f(x+h) - §x) = 0..IFh < 0, x+h < x, aud f(x+h) = {(x).

Hence {{x+h) - f(x) = 0. .

So either f(x+h) - f(x) and h are both non-negative or they are both non-positive.

Therefore, '
fix *‘__h.')l_T..I:E]. is non-negative for all non-zero values of h.

Mim f{(x+h) - f(x)

Therefore, h—0 N must also be non-negative,

Thus, f'{x) = 0.

Conversely, tet f'(x) = 0, for all x in 1.
Let a < b in l. We shall prove that [(a) = ((b). By mean value theorem (Theoren: -
3, Unit 73,

fb) - 12y £°(c) for some ¢ € fa, b { C1.
b-a
Since F'{c) = 0, we have , *
I:{l:_)_—_l’(_a) 2 0. Also b - a > 0. lt follows that f(b) ~ f(a) = 0, or f{(b) = f(a).

b-a
Thus, a < b Unplies [ta) = f(b). Therefore, f is incrcaéing.




b) This can be proved similarly. We leave it as an exercise. It can also be deduced Applicatians of
by applying pan a} 1o the function, -, - Niffereatlal Cateulpy i

E En Prove Part b) of Theorem 1.

- From (he class of increasing functions we can separate oit functions which are
Mm&l&h%“&ﬂh&uofﬂum
“*strictly incressing function*, )

Dafinition 1: [:]1 —'R is sald to be sirictly Increszing if a < b;mpliu that
fa) < f(b).

We can similuiy'say that 2 functbon defined on 1 is strictly decreasing ifa<b
implics f(a) > f(b). For example, a constant function is not strictly Increasing, sor
is it strictly decreasing. The famction fix) = [x] 100.-is increasing, but not stricily
increasing, whereas the function f{x)» x is stric:ly tncressing, —

Ey
Fig. 1 shows the graphs of thess three functions. I Fig. I(a) the graph 1i

horizontal. Im Fig. 1(b) there are parta of the graph which are horizontal, -But the,.-
graph in Fig. 1(c} has no bovizoatal portions, and riscs a3 we go from lefi 10 right.

n s o o T SRS B A —— ——e
: . 4 2ed 2 4 . I
0 x 'I-Q--_z
= -+
-— +4
» o) - [43]

Tig. it (20 grupi of Tiadw 1 (W) grapk of Mx)=Jx] () graph of Nx)=x,

Now let us see whether strict monotonicity of a function is reflected by its
derivative. We have the {ollowing theorem.

Thomnl:a)_l.etf'bepuhiuoul.Thmf-isnridlyinm:ingon L
b) Let * be negative on L. Then i ix strictly decreasing on 1.

Proof: a) By Theorem |, we know that since (* > @ on.{, [ must be increasing on
l. That is, x < y = f(x) < f(y). We have only to prove that il x < y. then {(x}
-annot be cqual to f(y). Let, if possible, i(x)=1(), where x < yin I.




Myt .
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Then, o v olle's Theorem {Theotem 2, Unit 75 applied 3 whe tanction | on the
interval 'x,¥], we have I (c)=0 for somie X < ¢ <y, ’

g ke candradicts the assumption that ° s :un'ctl;; positive oa 1. Hence f(x) _
crmwe? Bo -.:q_inal 10 f{y} tor auy x<vin L T, x < y = f(8) < fy). That is, f is
wrivily insreasing.

"+ W¢ indicate tva different proofs for tais part. One way is 1o imitate the proof
wi parr ) by clanging dhe syrabol * <" o tiwe symbol *>*, wherever it occurs.

Anather way is o consider -, apply Theorem 2 a) 1o it and use the fasts:

(-0 = -[". “tierefcre £ is negative if and only if {~N" is positive. Also [ is
stricely decreasing if and only il -[ is atrictly increasing. Combining the resuits for
increasing and decreasing functions we get the loltowing corollary

Corollary 1: f is strictly manotomc on the interval I it £* is of the same sign
throughout I, S

You may have noticed that wicic is a difference betwesn the stateraents of
Theorem 1 and Theorem 2. We sald:

“*f is :pcrcasing if and only if f’ is-non-negative”.

"I ' >0, then [ is striculy increasing’.

[t is nalural to asgk:

Can we have *if and.only if" in Theorem 2 alio? That is, if f is strictly
increasing, does it follow that f* > 0? Unfortunately, we have 2 negauve Sngwer
zs shewn in Example 2 below,

But before thai, aur {irst example shows Iu:'nw among many methods avnll-lhble to
prove the monatonicity, the one using differentlation is the simplest (provided the
function is dlffe--nlinb!t of course),

Examule 1: Let u,x)-:t for all x in R. We sh&ll prove that the function f.is
increasing.

First Method: Let x < y. We want to prove that »? < y?, Consider 1wo cases.

Case I: x and v are of the same sign. {Bither bothi are positive or both are
regative.) fp this case Xy > 0. Now,

v ot ey~ %) yTesy 4 2% = O sine hoth y - x and y¥ 4+ yx+x7 are’
mon-negaiIve.

Case 2: Let x and y bc nol of the same sign, Since X < y, this mezns that

x < 0 < y. (Note tha if gither x or ¥ is 2070, it cones under Case 1,) Therclore,
' « 0 < y) Becauge, the rube of a2 negative number is nepl.i\re, and the cube of
a positive number is positive. .

Thus, in both cases x’ 13 y7. In fael, we have the strict inequality (x* < y%),
indieating that x — x*1s a strictly increasine function.

Sccond Method: Let x < y. We want t prove that x* = y3,

Now (v' -xY) = (y ~x){y? +-yx + x})
Here v - x > O (since X < v} Also, y" + yx + ¢° = 0 because

Iy 4-.\') + (y + 2yx + x9).

vEoeovw o+ xt =

i
2
R : ;e o
Iy~ v x= + {y 4 2¥} =
2 -
sinee the square of any piimber is non-negative. Thus y* - x* is a product of two
non-pesative wnolers 4. henee {8 non-nepaive.

Thied *erhod- (sing Differcntiation): Ler f(x} = x*. Then f*(x) = 3x* This is
alwavs poa-peaiteer. Therefere nsing Theorein 1 we can say that [ is an Increasing
unricn )




Example 2 Hore we give anempnple of o sty imeegas: o bunchon whose

. N . A alinfia or
derivative » oo bty positive,

ey nsrat 12 kel
Let 1: R = R be the funcnon denmed by 13 - 80 (see b 200 I s atricily

increasing because, . _ 41\. ;
X< yveyv-X>0undx-ty >0 ) H :

sy o x" gy N yx oY) 31
) ’ . . .
RN (CR S N B /
B 1 -
a2 N N - 8]
, I el o
Hs derivarec is noz srictly positive beeause () ~ 0. Qur neat example describes :
two dipterent wavs iowiich non-monotonicity of a funciion can be proved. : !
Example 32 [o prove thal the function [: X ~ sinx + cos 2x is not monotoniv . |

on the intersal 0, w4, we can proveed as follows:

Fird Method: W shall consider Lhree ﬁoinls. 0. x/6 and =710 belonging to
0. =/4.
Fip, 1

Then, M) snth 4 con () 1

1
K(x/6) = ~in ; ¥eos - o= - 4

|
-—- I
] 2 2 .

{10} = sin i:i * vos -; = 0.3090 + 0.8090 > [

We have 0 < x/10 < =/6 and f(0) < [(x/10) > E(x/6).

Therefare, ¥ is acither increasing, mor decreasing on [0, x/74). Or, We can say ta
I is not monotonic on [0, x/4].

_ Second Method: (Using Differentiation)
Let f{x} = sin x + cos 2x
Then f°(x) = cosx - 2sin 2x .

Now. F'(0) = 1 -0 = landr'(r/q:v,li-z x1 < 0.

Thus I is of different signs at 0 and x/4.
Therefore [ is not monotdnic on [0, x/4j.. .
Owr next example warns os in deafing with funclioas not defined at some points.

Exampié 4: If the function { : x ~ tapx is defined on an interval, we can prove
that it is an increasing function thére. See Fig. 3.

A ' ’l . 1 i '
Y- : I i 1 {
1 i " ! :
' ' H i !
I i 1 ]
.. 1 - I 1
| : . ; !
i ! : I
1 H t ! 7
| ; ! .
o A / .' 1%
_ . e — e’ _
ﬂz 31:4- / l
. : L
v : A
3 1 4 :
.'} ) I .-j .
| | /
' i

M amer




AppHications of Calcabes

Now consider he interval [0, z]. Can we prove that tanx is increasing on this |
interval? Suppose we argue as follows:

£ {x) = sec?x, and sec?! x = N v ¥ since the square of any quantity is non-
negative. Hence by Theorem |, f is an increasing function on [0, x].

. . T 2x .
But if we take twa points ry and T in {0, =j,

- f 2 .2
then t k:) = tan -;'- = l,andl‘(——;:-) = fan =% = -3

2
Thus, ol < Z—I. but tan = £ tan _1r'
4 3 4 3
This indicates that tanx is not an increasing function on [0, x).
So where did we go wrong? We can explain it as follows:

In the interval [0, x}, there is a point, namely -;-, where tan is not defined. Hence

its derivative does not exist at that point, and therefore We can not apply Theorem |.

What we proved is that this function is increasing in an interval, provided it is
defined throughout this interval. It is only when it is defined, that we can
differentiate it and apply our theorems.

In the next example we use an additional propcriy of continuous functions in the

" first methad, and repeated differentiation in the second method.

Example 5: Let us prove that the function x — sin x+cos x is mcrca.smg on
[0, x/4] and decreasing on [»/4, x/2].

First Method: Recall that for al! x in the first quadrant {i.e. if 0 = x = x/2),
5in x, cos x and tan x are non-negative.

Let f{x}=s5in X+cos x, then £'(x)=cos x - sin x

We noie that ['(0)=1,

f*(x/4)=0,

f'(x/2)=-1.

x=x/4 is the only point in [0, x/2] at which '{(x)=0.

Because *(xj=0-= cos x=sin x = {an x=I. But tan x is strictly increasing on
[0, x/2], by Example 4. So, it cannot take the value 1 at any point other than
/4.

Also, ' is a.continuous function because the sine and cosine functions are
continubus.
Therefore, I cannot take negative values in [0, x/4].

Explanation: If a continrous runction takes a positive value at ¢ and a riegative
value at soine x, then it must be 2¢ro somewhere in between 0 and x. In this
problem, the continuous functionf’ cannot take the value zero between 0 and x if
X < x/4. -

Therelore, since [’ is non-négative on [0, x/4), [ is increasing on. [0, x/4].

Similarly, ' cannot take positive values in [x/4, x/2], because its value at x/2 is
negative. it follows that f is decreasing on [x/4, ©/2]. .

Second Methed: Let f(x)=sin x +cos x, and f’'(x) =cos x - siz x. To prove that [

is increasing on (0, x/4], we have to prove that [’ is non-negative on [0, x/4). We -
first note that £ (0)=1 and {’ {(x/4)=0. [t is enough Lo prove that €' is decreasing
on [0, x/4] (for then, all values of £’ in thi§ inierval will be between 0 and 1). For
this purpaose we consider T*(x)= - sin x - cos 5. 2>+ Tin. 4(a) ard (b).

We note that f7(x) = 0 for all x i the first quadrans, and in particular for atl x

m e, 5L T omyfoea £7 ie Aecroasine on {0,x/4). Therclore, (since £°(0)=1 and

£ (xr4)=0), £* 15 non negative on [0, 7747 Therelnre §is' increasine on {0, x/4).

Mext, we sholl prove thar ( is non-positive on [x/4, x/2]. Firsi, we nolc that
f'(x/4)=0 and f'(x/2)= -I. Also, [’ is decreasing on [x/4, x/2], since [“(x) < 0
on [x/4, x/2] Therefore all the values of f* on this interval are between 0 and -1
and hence cannot be positive Therefore { is decreasing on [x/4, x/2].
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Fig. 4: (n) Giraph -I:-i’mull- 5+ ¢co 5, {b) Geaph af (A} mcot x - sln 2

1l you have lollowed the arguments in these cxamples, you should not have any
difficulty in solving these cxercises.

E E 2} Assuming thal ¢* never takes negative valucs, prove that it is an increasing
funciion on R. -

-

[E: E 3) Prove that inx is an increasing function on ] 0, = [.




Apmllctions of Csicalus E 2 4} Using the fact thar sin x and cos x are never negative in the first quadrant,

prove by differentiation that sin x is an increasing Function and cos x is a
deereasing funcrion on {0, x/2). ’

E E 5) Which of the following functions are increasing on the interval given? Which
; of them arc decreasing?

a) x>~ 1 on [0, 2)

b) 2x3+3x on [- 172, 1/2}
che‘on0 1]

D xx-DE+Doni-2, - 1]
€} x sin x on [0, x/2)

N tan x+cot x on [0, r/4)

\ L e L e o W e el —




E E 6) Prove that 1he following functions are not monotonic in the intervals given.
a) 2x*+3x-Son |- 1.0 ¥
b) x(x-1){x+1)on 0,2}

c)‘x sin x on [0, x]

d) tan x +cot 1 on [0, x/2)

—_— -
E E 7 Give an example of a subic polynomial that decreases on | ~ o, 2}, increases
on [2, 3] and again decremiex on |3, =],

(Hini: The derivative should change sign while passing through 2, and agsin
while passing through 3.)

14.3 INEQUALITIES

Another application of differential calculus is to prove certain inequalities. In the
three examples below we illustrate how some inequalities can be deduced from ’
Taylor's wries of Unit 6 a1d the mean valur theorem (Theorem 3) of Unit 7, and

Tom the - crems proved jn €. .

Applirstiom. of
DlTeremtil Culculus
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Applications of Calcatus

In other words, e* <

Exampic 6 Suppose we want {0 prove ¢* = | +x for all x in R.
Let f(x}=¢" - x, Ther {'{)=c" -~ |, f"(x);ch

We know that ¢* > 0 for al! x.

Therefoce, {(x) is a strictly increasing function,.
Also (0 =0.

Therelore there is no other point where f' vanishes.
Also, ['{x) > 0if x > 0f'(x) <0ifx < 0.
Thereiore [{x) i increasing on ] q, @ [.

So x > O implies f(x} > f(0). This meanse* - x > &% - 0=},
This proves e* > 1+x, if x > 0.

It remains to prove this for negative values of x also. For this purpose we let
g(x)=e" - xe¥.

Then g'{x)=¢* ~ (xe*+e*)= - xe* < 0 wherever x > 0.
= g i5 stricily decrcasing on 1 0, o [
= gfx) < 2(0) whenever x > 0.

= e - xc* < ¢? - 0.¢"=1 forall x > 0.

for alf x > 0.

I -x
1
i+y
e¥ > 1+yfory < 0. In other words, e* > 1+x forall x < 0.

Putling y= - x, we gete™? < , OF

When x=0, e*=f=1+x,

Thus, the ineguality e* = !+x is true for all values of x.
In the next example we give an inequality that is still better.
x X!
Example 7: We prove thai e* > !+x+T+—6- for all x > 0.
We have seen in Unit 6 that the Taylor's series expansion

e'=l+xr -i-'-+-~--i- ....... ts valid for all x,

This proves the inequality

. 2
et > I+\;+—2—+—é— whenever x > 0.

Fig. 5 represents the results of Examples 6 and 7.

4

1ol

1+ %4 .y




“Example 8: To prove h" - a" £ nb" ' (b - a), wherever 0 < a < bandn > 1,
we consider the function [ @ x ~ x™ on the interval ja, b. It is continuous there. It
is also differcntiable in ] a. b |. Thercfore, by the mean value theorem, there is
some ¢, a < ¢ < b such that

IllcIl-l - rc(c)= ,(bJ - r{al
b-a

Cross-multiplying we gei. b™ - a"=ne™! (6 - a).
Therefore, it suflices 1o prove that ¢™' < b™/,
This 5 trhe beeause 0 4 « < b, and n > 1.

You can try these exercmes nove

E E 8} Prote the folinwing incqualities using the methods indicated alongside in

hrack. .

a) In (2o v o Nor all positive x
tfi-s: prove that x - 'n 11+ x) is increasing).

Uj i 4 = 4 for all posmve x
. {by mcan value theorem on [0, x] for tan™! x).

€} " +c™* > 2 ¥ x. (writing ¢*+e™* -2 as a perfecl square).
d} ¢ +¢™ > 2 v x. (using the already proved result ¢* = 1'+x).

e)c'-e "= 2xvx > 0. (using the inequality .in d) and differcatiation).

Appllcatlun, of
Differential Cateulys
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= crrar s [he dilference between

16

w * ra] value and rhe approai-

v e

14.4 APPROXIMATE VALUES

In the previous two sections we have seen how the concept .of derivatives can be
used in proving the monotonicily of a given differentiable function; and how this
knowlcdgc can be appllcd to prove some inequalities.

In this section we :,..:ll sce how Taylor’s scries can be used to find approximate
values dbf some functions ar some points. We use the symbol = to mean
approximately equal to.

Exsmple 9: Taking the first two nonezero terms in Maclaurin’s series for sinx, we
shall prove that sin 20° is approximately equal to 0.342 (in symbals, sin 20" =
0.342). Remember that in the formula

S s

. X X
SIDX@&X - ——db—— =, , ., ...
LTI 1|

the angle x is always measured in radians. The same holds*for cos x, tan x, and 'sb
on.

Now, 20* =-§ radians. Therefore,

. x o« (x/9)
sin —=— - S
29 i
sin =-r (x/9)°
9 9 6 '
Taking r=3.142, we get this quantity to be
14 0425 .
3 ry 2 - =0.349 - 0.007=0.342.

If you look into a table of sines, you will find sin 20° =0.342. This shows that our
approximation is really a good approximation. In fact, the tables are written by
using precisely these methods.

Enrnple 10: Let us find the approxlmate value of (0.99)°72 by lakmg thrée tetms
of Maclaurin®s series for {1 - x)*?

Maclaurin’s series for (1 - x)’? is
-3 BAGD L
2 2

We can write (0.99)%7 as (1 - 0.01)%2.
So when x =0.01, taking the firsi three terms of Mzclaurin’s serics, we get

(-001)% =1 - % (o.on+—'é§- (0.0001)

That is, (0.99)72=0.975.

Example 11: We know that cos -:—- =v3/2. If the first two non-zero terms of

Maclaurin's series for cos x are taken 1o approximate il, let us calculate the error,
rounded off to two decimal places.

Maclaurin’s series for cosx is

xt  x?
| e ———— e, . ...,
2 T a

if we take tie first two 1erms aionc and put x= ¥/6, then

T =6 ., 1 (ﬂg)z
2 2\ s

= 1= 0.274/2=0.863

The actual value i5 vos % =v3/2. We know that ¥3/2=0.866 whcn rounded off

to three dectmal plices,

2
We have found that 1 - ('/6] ~0 95 :when rounded off 10 three decimalplaces-




* The ¢rrar s (L8646 - (1.863 =0.003. Applicatioas. of
Differential Cricninx
When rounded off 10 1wo decimal places, the ervor is.0.00. (This means that the '
error iy so acgligible that there is no error ar all when rounded off to two decirnal
places.) )

Sce if vou can find the approximate values in the Ifoll_oﬁing exercises.

E I} 9} Find the approximate value of sin 31° by taking the first two non-zero_terms
of s Macl:nurip‘s series. .

IE "E 10) IF the first three nonzzero termis of Maciaurin®s series for cos x are used to

approximate cos —;-'-. show that the error is less than 1/50.

EE lrl) Find thewvalue of cos §9°, rounded off to one decimal place

177




i
. /
Applications of Calenlns E E I2) Find(LOI} 2 upto two decimal places.

That brings us to the end of this-unit. Let us summarise what we have studied in ji.

14.5 SUMMARY

In.this unit we have studied the following resulis.

1) 16 fis : then §' is
increasing non-negative-
decreasing non-positive
constant identically zere
monctonic , of same sign throughout

2) e s’ then { is -
non-oegative increasing
non-positive decreasing
(steictly) positive strictly increasing

" (strictly) negative | - strictly decreasing
identically zero . constant
of same sign throughout monolonic
K} Differentiation can be used

® to test waether a function is monotonic or not,
@ 10 prove some inequalities,
e and to find some approximate values,

14.6 SOLUTIONS AND ANSWERS.

E I) Let T be & decreasing function. 1f x € [, then f’(x) exists, and
im  f(x+h).- f(x)
h~0 f
h>0mo fix+h) 5 fx) = fix+W-Mx) 5 0
h<0=fx+h) = fix) = {{(x+h) —.f(x) = 0.
o, Hxth) - ()

-
g -

h

f'ix)=

N o L
v ¥

—a M
n o~ v

iim  {x+h) - [{x} <

o - 0.

Henee ['{x}=

Now, let f*{x) = Oin Y, anda. b €lsi. i< b Then3 e &,

f(b) - {{z) )
b-a _

r-a.>0 -_f:(b) - f{a) < 0 or f(b) = f(a).

i8 = [ is a decreasing function:»

=f(c) = 0.




E2) Let iix)=¢". FF{x)=e* = 0vxecR
= [(xX)=e" is an increasing function on R (by Theorem 1).
1

£ 3) If {0 =In x, £'(x)= —. Now i >0 vxe]o, o]

Hence In x is an increasing function on ] 0, e [,

E& I f(x)=sin x. then F'{rny=cos x.
cosx = Qv xel[0 »/2)

Hence sin x is an increasing function on [0, .1-/2]. Similarly for cos x.

E5) a) f'(x)=2x = 0 on {0, 2]: f is increasing on (0, 2.
: L 17, e incrensing on |~ L, &
b)f(x-]=4x+3200n[—?. -2—].fismcreastnsqn[ 3 2]
¢) F'(x)= -e¢* 5 0on [0, 1] = {Is decreasing on [0, 1}.

d) increasing

€) increasing

X = —
. sin
¥ x € [0, x/4]. ,". [ is decreasing.

3 3 % Osincecos2x = 0
x cost x .

N F'{x)=secl x - cosec

E 6) a) ['{(x)=4x+3
f'(x) s 0if x € [ -1, ~3/4] and f'(x} = O if x € 1-3/4,0].

’ =% [] H __‘____
b) f'(x)=3x 1.f(x)s_0|fxe[0. 'ﬁ']

andf(x)zﬂul‘xe[ﬁ.z]

= 0 for x € [0, =/2]

¢) f'(x)=sin x+x cos x[ =< 0 for x € [1x/4, x].

d) similar argument

E7) Let f(x)=ax’+bx?+cx+d
f'(x)=3ax?+2bx+c
f has'extreme at x=2 and x=3.
F'(2)=0 = l2a+4b+c=0
and I'{()=0 = 2Ta+6b+c=0
S 152420 =0
-15a
orbe=——_ " c=18a
. 7
Suppose a=- 2 and d=0,
Then f{x)=- 2x’ + I5x? - 36x satisfics the given conditicns.

E%a)fx)=x-In(t+x). I"'(x)=1 - T:—_ =0forallx >0
] x
x = In {1 +x) ic increaging on 10, ool -
= In{l+x) < x ¥ x €14, o

b) fix}=tan™' x.
Let x > 0. By the mean value theorem 3 y € ]O, x| s-t.

tan~' x - tan™' O

-—..-..=r'
=~ 0 (4]
or ran”’ x ! < tforyelo
B r— .
X I+y? y €10, x

"tan'x < x v >0

Applications of
Differenital Calculus
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Appiicotions of Calowinr At +e™ - =("+e™MY) % 0 v,

d) et = l+xand e =e’ = 14y=1] - x (if y=x)
LeThe ™ = l4x4l - x=2,

¢} Let f(x)=e’ - e™ - 2x. Then f'(x)=e"+e> -2 » 0.
= [ is an increasing lunction
= fx}F= f(0) forall x > 0
oet-e"-2x = 0forallx > 0.
=e*-eV> Mforallx » 0.

| k]
E9 sinx=x—x—+—x—-.....
31 st
| ]
3l'=—::'-3—g— radians.
.. 3w 3x (31-; 3.
. N = T - v —
180 180 189/ 6
o 31x%3.142 _(31::3.:42 3} )
180 180 /6
=.5411 -k.wn’%
=.5411 - ,0264
= 5147,

E I0) If (x)=cos x,F*(x)=-sin x, f*{x)=—-cos x
1= (x)=sln x, f' (x}=cos x

2 ) ']
fx = cos %= f(0)+ x HOH_;T £7¢0)+ ';T £ (0)+ ':T 9 (0)

x x \* | rY lu'.(-r"l
cos —2--c050+3—x9-( ) -5-!—)(]+(2' x " 0+ ..::.) Fxl

2

LS
=]l-—+

8  16x24
oL 314 Gae)t

8 1624

=) - 123440235
=0.001,

We-know ihat COs -;-r-=0

.". Errar=0.00T <. -‘-

50
5oy $9x\2 |
1 —_— | - — -~ X
g 1) Cos =2 (lso) H
o 3.14ix59)3 l
I N Y AT
= 1-0.530
= 0.470 -
=05
- .,

2 l = + ——_—
EID{l+x¥=1+1x 3 |

-1
—_— —

2
~Lohontra(r+oont? = l+% .01+ g'fi*‘ {0.01)*

20 a1 +0005 - 0 ORI -5 X




UNIT 15 AREA UNDER A CURVE

Stracture .

15.1 * tntroduction oL 1
Objestives , A :
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Canesian Equation . Lol
Polar Eguatsons '
Arca Bounded by & Clnt " Curve
15.3  Numerxal Integravion 25
Trapezoudat Rule
Simpson’s Rule '
1.4 Summary 42

15.5 Solutions and Amwers a2 -

15.1 INTRODUCTION

When we introduced you 1o integtalion, we mentioned that the origin of the
method of integration lies in 1he altempt to estimate the arcas of reglons bounded
by plane curves. In this unit we shali sec how (o calculate the ares under a given

* curve, when the equatian of the curve is given in theCartesiar or polar or
parametric form. This process is also called quadraiure. We shall also study two
methods of mumerical integration. These are helpful when the antiderivative of the
integrand caonot be expressed in terms of known functions, and the given definite
integral cannge be exactly evaluated.

* Objectives

After reading this unit you should be able to:

¢ use your knowledge of integration to find the arca under a given curve. whose
equation is given in the Cartesian or polar or parametric form,

@ recogmise the rofe of numerical iptegration in solving some practical pmhiems
when some values of the function are known, but the function, aa whole, is
nrot knowa,

@ usc trapezoidal and Simpson's rules to find approximate vlluu of some definite
integrals,

@ compare the two rules of numerical integration,

15.2 AREA UNDER A CURVE

In this section we shall see how the area under & curve can be calculated when the
equation of the curve is given in lhe

f) Caresian form

ii}. polar form .

iii) parametri form.

Some curves may have a simple equation in ope form, but complicated omes in
mhets So, once we have considered all these forms, we can choose An appropriate

ryma— - g
TG 17 a .lv:n wuLve, ‘and ihen im‘..a-n‘- n —T-n"""""uuui-"}a !:- s onelder thase

forms ol‘equm:sm byonc.

15.2.1 Cartesian Equation

We shall qyickly recall what we studied in Sec. 2 of Unit 10. Let y=1(x) define a
continuous function of x on the closed interval {a, b). For simplicity, we make the
assumption thal [(x) is positive for x € {a, b]. Let R be the planc region in

Fig. | ta) bounded by 1he graphs of the four ¢quations:

.v=10{(x), y=0,x=a, x=b,

21
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We dividc the region R into n thin strips by lincs perpendicular to the x-axis
through the end points x=a and x=b, and through many intermediate poinis
which we indicate by x,, X2: «-es Xg.1. Such a subdivision, as you have alrendy seen
in Sec. 2 of Unit 10, is referred to as 4 partitlon P, of th¢ interval [a. b} and is
indicated briefly by writing

Pn=la=xﬂ < X < Xz < .0 ® ooy = xn=b]

e

Y
) y=1(x)
0 X
(s} (®)
Fig. 1 .

We writt;.-

Anm=x-x, fori=1,2, .., n,
and take the set of n points
Tasltn o, o 1)

such that x| S 4 § xfori=1, 2, ..., n. We now construct the n rectangles
(Fig. 1 (b)) whose bases are the n sub-intervals [X .1, 2l i=1, 2, ...,n induced by
the pariition P,, and whose altitudes are ), fty), ..., ), .., f(tap), Kt). The

sum E f) ax
l=l

of the areas of these n rectangles will be an approximation to the “‘area of R,
Notice (Fig. 2(a) and (b)) that if we increase the number of sub-intervals, and -
decrease the length of each sub-intervat, we obuain a closer approximation to the
"“area of R

'3
Y

0

m Fig. 2 ()

P




Thus, we have
Defialtion 1: Let € be a reai valucd function continuous on (a, b, and let

f(x) = 0¥ x € [a, bl. If the limit of E f(t;) A x; exists as the lengths of the

sub-intervals, & x, — 0. then that limit is the arca A of the region R.

That is, A= im 37 fa) ax
b
LY P S

Compare this definition with that of a definite integral gwcn in Unn 1Q. Over
there we had seen that she definite integral,

5 (x]dx:slhecommon hmuorz m; & x; and E M; Ax.a.sthea:qs - 0.

Now since m; < f(t) = M; vi, we have

E mAax < 2 [(Yox = 2 M;ax
i=1 i=l .
Hence if the limit of cach of these as & x,’s — 0 exists, then by the Sandwich
Theorem in Unii 2,
lim Zmi Ax s lim z“h) ax, s -lim Y Max
sy =0 =1 aXg =0 jut ax; =0 jmp
Iat, 2,8 - =4, 2.0 imf, 2 .0

b .
Now, if 5 f(x) dx exists, then the first ang the third limits here are equal, and
" v third ;
L ]
therelore we get A= S {¢x) dx. wee()

] -
The equality in (1} is 2 consequence of the definitions of the area of R and the
b .

definite integral g f(x} dx, Since f(:) is assumed 10 be conmtinuous on the interval

{n. b}, the umegral in {1) exists, und bence yields the area of thé region R under
consideration.

From the Intervel Union Property (Sec. 3, Unit _10) of definite integrals, we have
] e b ; ’

Sf{x)du=§l‘(n)da +§l‘[x)dx. asg:sb. et
J .

a H *

-This means if A§, AE. Ab de;wle the areas under the graph of y=1{(x) above the

x-uls from a 1o ¢, from c to b and from d to b respectively, (Fig. 3) thcn ifcis
jn between a and b, then we have .

Al + Al = A we(3)

If we defing Al ~ O, A} = 0, then the above equatios is true for c=a'and ¢c=b
tao. .

il now, we have assumed the fupction f(x) to be positive in the interval le, bl. In
general, & function f(x)} may assume both positive and negative values in the
interval fa, b). To cover such a case, we introduce the convention shout sigined
areas.

The arca is taken to be positive above the x-axis as we go from left to right, and
negative if we go from right to left. The funciion {(x) may be defincd beyond the

Arce Under 1 Curve

Fig.

23
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Applicalions of Calevlos interval Ja, bj alse. In that case {3} is true cven if ¢ is beyond b, sirce according 1o
our convention of signed areas, A will turn out 10 be a ncga_livc quantity (Fig. 4).
Thus, A} = AS + AP = AS - AL,
Or, A} + Ap = Af.
Now, if [(x} < 0 for all x in some interval [a, b], thep by applying the deflnition
b

of "area of R*" to the function ~f(x), we get the area A= - 5 f{x) dx.

negative, since {(x) is negative for all x € [a, b). To avoid a ‘‘negative™ area, we
- follow this convention. Thus, if f{x) < 0 for x € [a, b) (Fig. 5), then the area
between the ordinates x=a and x=b will be

Fiz. 4 y
A= -S f{x) dx

The-following examples will illustrate how our knowledge of -evaluating definite
integrals can be used to ealculate certain areas.

o
-2
"

1
a
If we do.not take the negative sign, the value of the arca will come out to be

Example 1: Suppose we want to find the area of the region bounded by the curve
a b X y=16 - x?, the x-axis and the ordinates x=3, x=-3. The region R, whose area is
to be found, is shown in Fig. 6.

The area A of the region R is given by
3

A=j(16-x‘)dx

fl
—

o

*

'
u"‘:,
el
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Example 2: Comider 1he shaded region R in Fig. 7.
)

Y

Fig. 7

R is composcd of iwa parts, the region R, and the region R;. We have
Arca R =Arca R; + Arca R,

The-region R is bounded above the x-axis by the graph of
y=x'+x7 - 2x, x=-2'and x=0.

Hence,

]
Arca R1=S (x? +x% - 2x) dx
A

1l

3
. [ |
The region R, is bounded below the x-axis by the graph of
y=x'+x!- 2x x=0gnd x=1.,

Hence,

1
Area u,--su’n’ - 2x) dx

0
L] ".l !] 5
"lT+T-xL“Ti

' 8 5 3

" Theref A T o W v
ore, rea R 3-i-lz 12

In this example we had to calcylase area R, and arca R, separnteiy, since (ke
region R; was below the x-axis, Therefore, eccording Lo our coaveniion

. 1
Area Rj»= - [ f(x) dx.
J
o

1
A we cllculalc'g f(x) dx, it will amoun! ta calaulating
: T

o 1

: j fi{x) dx + j f(x} dx =area R| - area R,, which would be a wrong -

-2 ;

estimzie of area R.

Arca Usder w Curve
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Example 3; Let us find the arca of the smaller region lying above the x-axis and
included between the circle x*+y>=2x and the parabola y?=x,

On solving the cquations x* + y*=2x and y*=x simultancously, we gt (0, 0},
(1. I), (1, 1) as the points of intersection of the given curves. We have to find th
area of the region R bounded by OAPBO (Fig. 8). :

A
Y

P

.

A
- -
0 C (L. 0) X

e 8

From the figure we see that area of region OAPBO
=area of region OCPBO - area of region OCPAQ -

1 1
=5 B Rian - j V& dx
! 0
b ]
Now, 5 fn - xtdx = j J1 = (U= x)* dx

u

It

5 cos & ( - cos &) df, on putting 1 - x=sin §

w2
0 w2

= S - cos? 8 df é[cos‘&d&»:%
' a

i

2

Also, S\’i dx e
a

3
2
Therefore, the required arca = ( -:; - ?)

Try [0 soive Lhese exerclses now.

E E 1 Find the area under the curve y=sin x betwean x=0 and - =.




ANE b udir g (

E E 2) Find the area bounded by the x-axis, the curve y=e" and the ordinates x = 1
and x= 2, ’

£ E 3) Find the area of the region bounded by the curve y=5x - x2, x=0, x=5 and
lylug above the x-axis.

€ E 4 Find the area cut off from the parabola ¥ =4ax by its latus rectum, x=a

27
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E E 5) Find the area between the parabola y®=4ax and the chord y=1nx.

[n this sub-seclion we have derived a t‘ormula Wsmnnda (1)) Yo find the area under
a curve when the equation of the curve is given in thecartesian form. With slight
modifications we can use this formula {0 find the area when the cirve is dercribed
by a pair of parametric equalions.

We shall 1ake a look at curves given by parametric equations a little later, But
figsi, let.us consider the curves given by a polar equation.

15.2.2 Polar Equalions
Sometimes the Caniesian equation of a curve is very complicated, bul its polar

equation is not so. Cardioids and spirals which you have encountered in Unit 9 are .

examples of such cucves. For these curves It is much simpler to work with their
polar cquation rather than with the Cartesian ones. In this sub-seclion we shall see
how to find the area under a curve if the equation of the curve is given in the
polar form. Here we shall ury to approximate the g:ven area through the areas of a
series of circular sectors. These circular sectors will perform the same function here
as rectangies did in Cartesian coordinates.

Ler r={{0) dctermine a continuous curve between the rays #=o

*and #=3 (B - ¢ = 2x). We waunt to lind lhe area A{R)} of the shaded region R in

Fig. 9 (a).

ia) [4-]

sl 2 e TR T




Imagine that the angle AOB is divided mta n equil paris &8, Aren Under 2 €urve

Tien a8 = L] .. This smounts 1o sticing R into n smallet regions,
n

R[. Rz.--hRng as Shown il‘l Fig‘ 9(b].

Then clearly

A(R) = A{R;)+ A{R2) + ... + A(R,},

= Z.: AR}

Now let us take the i'™ slice R;, and iry to approximate its ares. Look at Fig. 10.

¥ig, 10

Suppose [ atlains its minimem and maximum values on [8,.,, &]. a1 v; and v;. The area al a o of 1 citele of
tadioy 1 ol wectorial angle A i

L] i ' o 3
Then = ) 80 5 AR) < - HoI 80, o
From this we gei

L] n n
! 1 LI I
g;mmMEEMMsE2WMn
The [irst and the thicd sums in this inequality are the lower and upper Riemann
sums (ref. Unit 10) for the same definite integral,

namely, 5 -;— [f(®)* da.

Therefore, by applying the sandwich theorem as 48 — 0, we ga1

B8 - [}
Mm=-% Sman*da:% Ir’ de )

We shall illusirate the use of this formula through some examples. Sludy them
carefully, so that you ¢an do the exercises that follow later.

Example 4: Suppose we want to find the area enclosed by the cardioid
r=a(l - cos §).

We have r=0 for =0 and'r= 22 for #=r.
Since cos @=cos (-4), the cardiold i symmetrical about e initial lincs AOX (Fig. 11).

R 1t

Hence the requlred area A, which is twice the area of the shaded r:gmn in Fig. 11,

H 1 munn hu

A = ZS LI
2

il

5a2(l—oosﬁ)2d9

[} . 8 . 8
4a?| sin' —- d8, since cas @=cos” —- - sin? -~
2 2 2 26
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2

= gal S sin? & d¢, where 4=
1]

| e

g 1
2
3, /

{n the case of some Cartesian equations of higher degree it is often convenlent to
change the equation into polar form. The following cxamplc gives one such
situanon,

Example 5: To find the area of the [oop of the curve

'xS_I_yS___ saxlyl.

we chanﬁc the given equation into a polar.equal,ion by the transl'ormation‘
x=rcos § and y=r sin §. [hus, we obtain

5a cos% sin® 8
r=—mmmm—m—m—m—- — e

cos* 8 +sin’ 8
which yiclds r=0 for 8=0 and ¢ = x/2, Hence, area A of the loop is that of a
sectorial area bounded by the curve and radius vectors =0 and &= »/2, thaf is,

the area swept out by the radius vector as it moves from 6 =010 8= x/2. Sec
Fig. 12.

Fig. 12
Thus, "
A=l [ 28lcostein'd
2 \ (cos’d + s’y
24 * 100 cecls 9
=< | /=«
2 \ (1+1an’6)”

it

=

= u? 5 d: . where t=1 +1an® &
2 & .
1

5 . o S
== a' -1/ == a?
2 { 2

Try 10 do these exercises now.

x ' . .
3 by applying the reduction formula from Section 3 of Uniji 12.




E E #) Find the area of a loop of the ¢curve r=a sin 38.

.!\rfl_ull.ﬂﬂ a Curve

E E7) Find the area enclased by the curve r=a cos 20 and the radius vectors

#=0,0=x/2,

E t3s Fi.ud the area of the region outside the circlé r=2 and inside the lemniscate

r2=8 cos 28.

[Hins: First find the points of intersectioB. 1‘hen the required area = the grea

under the lemniscate — the area under the circle.)

31
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Here we shall conxider curves

15.2.3 Area Bounded by a Closed Carve

Now we shall turn our aitention to closed curves whose equations are given in the
parametric form.
Lel the parametric equations

=), y=¥(t), 1 E [ox. Bl.

which do niot inters~t themselver,  where ¢{ar) = &{(5)- and Mu)-ﬂﬁ) represent a plane closed curve (Fig. 13).

Note how we have modilied
Tarmula (1) for a peir of
MAFAMCTRIC rquations.

32

Fig. 13

This means that as the parameter t increases from a value « to a value 8. the point
P(x, y)} describes the curve completely in the counter clockwise sense. Since the
curve is closed, the point on it corresponding to the value 8 is the same as the
point corresponding to the value . This is reflected by the conditions ¢{tr} = ¢(5)

and y(a) =y{8).

Supposc further that the curve is cut aL most in two points by every line drawn
parallel 10 the x or y-axix We ajso assume that the functions ¢ and ¢ are
differentiable, and thet the derivatives ¢° and ¥' do not vanish simultancously.
Let the point R on the closed curve cotrespond 16 the values « and 3, i.e., at R we
have ¢{a)=¢(8) and Y{a)=¥(f).

Now suppose A is a point oi the curve which has the teast x-coordinate. a.
Similarly, suppose B is a poinl on the curve which has the greatest x-coordinate, b.
Thus the lines x=3a and x=b touch the curve in points A and B, respectively.
Further let 1, and 1, be the values of t that correspond to A and B, respectively.
Then .

a <t <ty <- 8.
Let a point Q correspond 10 (=1t such that I; < t3 < (,. The area of the region
enclosed is S=8§; - 5;, where S; and S, are the areas under the arcs AQB and

ARB, respectively (see Fig. 13). Hence,
b b

S = SydxandS, = “‘ydx

a .
(AQB} LARD)

MNow, as a point P{x, y) moves from B (o A along BQA, the value of the
parameter increases [tom ty to (. Therelore,

dx
dx = — dt
b

1
(BQA)

Hence §;= - Sy -—?— dt




Now the movement of P (rom A to B along ARB, can be viewed in two parts: - Ares umider 5 Carve
From A to R and lrom R to B. As P moves from A to R, the value of the
parameter increases from {, to 8, and as P moves from R to B,-t increases from o

©h R;mcmber the poinl R correapands
b s R Witwgand alsoto =9, -
fore §, = dx a dt + & di
Therefore §,= -1l y y % y e
a 1 &
(ARB)
Thus, we have
5 b
Sa Svdx— jvd: = S; - §
[ ] [ ]
(AQB) (ARB) _
I, a 1, a -,
dx dx dx . .
- - d - —dt =~ — &t i}
Svdldigyddtjym g’m
[ 1, a a

Note that the negative sign is due o the dlrealon in which we go round lhe curve
as marked by arrows in Fig. 13.

Simitarly, by drawing tangenis 1o the curve that are paralie] to the x-axis, it can be

shown that
8
dy .
S = — drt
From (i) and (i), we get
P
dy dx
2S = Bt ARSIl
5 (" a ¥ ) &
Hence, the arca enclosed is
, d
!
§ = 3 !(!dy - ydx) _ (5

. We can use any of the formutas (), (if) and (5} above for calculating S. But in
many vases your will- find 1hay formula (5) i 1s more convenient because of fis
Xymmictry.

Fxample 6: Lot us find the arca of the astroid
x=aest. v=bsinY. 0 5 ( 5 2.

The region bounded by the asiroid is shown in Fig. 14.

The grea A of the region is given by

! dv .
NPT

LY

dl'

NI-—
c..‘r:\.
]

ﬂ'—.—-—'la S Cerpm Py [

| Ly '
= 3 | i3 cost (3b sint wsTY - b sin’t ( - 3a cos sin 1) d

3ab | . .o
= —2- COst snt dr
a
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Fig. 14

We have scen in Section 3 of Unit 11 that
I [

Sl'(x)dx =5f(x]dx +5f(2;1—x)dx

= zj fix) dx. if ff2a - x)=f(x).

Here cos? (2x - ) sin? (2x - t)=cost sin?.

Hence ."' cos™t sinft dt = 25 cost sint dt.
[1]

Therefore, A =3ab S cosi sinét dr.

Now, by a similar argument we can say that
2
A=65 ab§ cos?t sin't ql.
0
Ix ab

= ===~ by using the rcdnction lormula from Section 4 of Unit 12.

You can solve these exercises now.

L] - . - LI -
;;-_ T %) Frind rhe area of the (urve

=0 {3 sif - sin'®), y=ncos'8. 0 s 8 5 2r.




E £ 10) Find the arca eoclosed-by the curve

L—_._' —— =

L Ty [P S \

yra'tos @+b sinGsc’ 05 8 5 22

E ¥ 11) Find the area of one of the 1oops of thic curve x=a sin 21, y=a sin L.
(Hint: Cast find two valucs of t which give the same values of x and y, and

take these as the limits of integration.). -

15.3 NUMERICAL INTEGRATION

In many practical problems, the values of the integrand, that is, the function
whose-integral is required, are known only a1 some chosen polats. For example,

! x Xt X X3 X3 Xa xs | ..

i

I i

yv=fix) : ; f~ v
1¥° “.-_ Yo Yi ¥z J’ll‘ ¥s ¥ .

Avd Umtler 3 ( urve
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The area of 2 Iraperium = Y (the
sumn of #1s parallel videsix helght.

36

In some cases, no simp:e integral is known for the given integrand. For example,
.sin

the function does nol have a simple indefinite integrat, In such a situation
X .
the integral 5 r(xidx cinnot be evaluated exactly, But we can find un

‘a

approximate value of the integral by considering the sum of the areas of inscribed

{inner) or circunicrihed {outer) rectangles, as we have seen at the beginning of this--

unit, In this section, we shall describe two mere methods for approximating the

value of an integral:
i) Trapezoidal Rule and ii) Simpson's Rule.

15.3.1 Trapezoidal Rule

We know that a given definite integral can be approximated by inner and outer
rectangles. A better method is gi~¢n by the trapezoidal nile in which we,
approximate the area of each strip by the area of a ttapezium, Such an
approximation is also called a Hnesr approximation since the portions of the auyve
in each strip are approximated by line segments. As before, we divide the interval
{a, b) into n subintervals, each of length ’

(b; a) i by uslng the poims xl;a.l. AXx, xz'na+2Ax.....

b x=

Xg1=a+(n - 1) ax between xg=a and x,=b. Then

b X, x ) ! 1, . b
S'r(x)dx =jf(x)dx +5f(x)dx +§f(:)dx ... +§ f{x) dx
] ] X x ) M

1 oY
=¥ S f(x) dx.

k=1 L i .
Now, we approximate the first integral on the RHS by the, area of the trapezium-
aPoPyx, (Fig. 15), the second by x,P,P;x; and 30 on, thus getting

b

gf(;)dx = 31'0'0 + y) &X +'—;-'()'| + )F;J. a4x + ... + %(y._, + VAKX

| 1
“(‘;Yo"'h'*h"‘---"‘h-l""‘i"h)41 ()}

where yo = f{xg), ¥; = (X)), . . . .¥a =™ f(x)

[ —




' The formula 16) is known as the (rapezoidal rule for approximating the value of a Area Under 3 Corve |
definite imégrat.
Sce if you can solve this exercise now.

E E 12) Use the trapezoidal rule to estimate the following integrals with the given
value of n.
2

4
a) 5:2 dx, n=4 b) S ;{;r:d dx, n=6.
]

.

15.3.2 Simpson's Rule ' - YT

lnulhmqhod.hmudofapp.mdmﬂnglhegivmmhyunew.we P et
Wﬂwmoflﬁnwmlqﬁugm / ™

The area uader the arc of the parabola \
,—Mliﬂl-i-c ’ Yo Yt Vo
between x= - h and x =k (Fig. 16} is given by

']
A.-g(&=-+ax+cadx -
] o~
4 0 X
3
= Z__A_}L +2Ch
3 Fig. 16 37
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ET]

Since 'he curse passes through the points. { - h, yoh (0. ¥¢) and (h, yp),
substituting the coordinates of these points in the equation of the parabola, we get
ss = Ah* - Bh + C

yw=2¢C

y» = Ah" + Bh + C,
from which we get

C=w

Ah= - Bh = 14 -4,

Ah® + Bh = y. -y,

= 2 ARY = ¥y + Y- 2y
Hence, on substitution we got

h

h N \
Ai= T [2A* + 61 = % e + ¥2 - 2 + 6y)]

h
or A = 0 [¥o + 4y, + ¥4 DY

To obtain Simpson's rule, we apply the above resuit 10 successive picves of the
curve y=[{x) between x =a and x=h. For this we divide [a. b} into n sub-intervals,
each of width h.

Then we approximate the portion of the curve in each pair of sub-intervals by an
arc of a parabola passing through the end poinis of thal portion of the curve and
the point corresponding 1o the common point (Fig. 17} of those sub-intervals.

Now consider the first two sub-intervals [a, x,] and {x. Xa]. The poinis on the
curve corresponding (o a, x; and x; are Py, Py and Pa, respectively. Let us draw g
parabola passing through Py, Py and P,. We will assume that the portion of the
afrve passing through Py, P, and P, coincides with this parabola. See Fig. 17.

4
Y
‘?’",—-—P: P-; Pn-l/-“
P, N :
\P.z - L
. r\N"'----:_.-----| .
yll Y Yl Yo ¥u
x—h
0 30X X X X - - X b
Fip. 17

Similarly we can approximate the portion of the curve in the interval {x;, x;] by a
parabola passing through the poimis Py, P, and P,. We shall repeat this process lor
the remaining pairs of intervals. Now the area under the parabola Py P, P, is given
by

A, = % {yo + 4y, + ¥1). (On using formula (7).

Similarly, the area under the parabola passing through the points P,, Py, P, is
given by

h
Ay = TIY:+43'J+)'4}.

Next, we use.formula (7) for the parabdla passing through the poinis Py, Ps. ** -
and get the area
Ag = % [yy + 45 + y]. and so on. .




x | 1.5 2 2.5 3
y={ (%) l 2.25 4 6.25 9
' (v vy (y) ) {va)

Note, that to approximate the whole area under v j;ven curve in this manner,
the number n of the subdivisions of the interval {a, i} must be even. Summing all
the areas we obrain

, h ' .
A = T Iyo + 4y, + 2y + 4yy + 2% + ..+ 2y, - dyo, + ¥l

ay the total area. The above lormula can also be wutlien tn '.ht_':.form

h . .
A= [yo + Yam + 20y2 + Yo+ Yod + 40y + ¥+ + Yamo))],

eaeln @ WE -0 L2 0 2 Note that ¥g, Yie ¥2..-0¥m 2r¢ the vaives of the
function, f, for x=a, a=h, a+2h,....a+2mh=b, respectively. Hence by Simpson’s
rule, we have

h

S fx) dx =

o

w[:l'

[(Yo+ Y+ 2z ¥ Yot o Vs ) T4+ Y3t oot Y] -

The following example will help us compare the accuracy of the trapezoidal and
Simpsan’s rules, You will find that Simpson's rule is more accurate than the
trapezoidal rule.

l'-:xa'mple 7: Taking (our subdivisions of the intervat {1, 3], tet us find the
J

approximate value of S x¥dx by the trapezoidal rule and also by Simpson’s rule.

Division by 4 gives 0.5 as the width of each sub-interval of (1, 3). The values of
the intcgrand at these points of subdivision are given in the following talle:

Using the formula for the trapezoidal rule, we obtain
1

Exzd;

Ir

(l + -|-)'+)'+l )ﬂx
zr‘o b 4] 2 3 21’4

(% +2.25 + 4 + 62 + —:—) 0.5 = 8.75 «.(a)

Using the formula Tor Simpson’s rule, we get
3

sz dx = —05—5 [1 + 9 + 2(4) + 4(2.25 + 6.2%)]

= —:;—uo + 8 + 34] = 8.66 ... or 8.67 ...{b)

The actual vallue of the definite integral
Kx’ dx = x¥/3 = 8.66 ... = B.67 fe)
1

On comparing {a) with the actual value in {¢), we observe that the value gi\;en by
the trapezoidal rule has an error of + 0.08. Comparison of (b) with (c) shows that
the error in the value given by Simpson's rule is zero in this case.

Example 8: Let us use the trapezoidal rule with six subdivisions to evaluate

E fsin x dx. We shall also find the value of the integral by using Simpson's rule.

Area Under x Curee

39
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™
. S\,‘smx dx =

We have

""fi_"l'mu' T w6 | w3 T w2 | 223 | sas6 x -
et S L2 I N W T

Using Isapesoidal e, We oblain

[y

?x0+f72 ¢ WA+ 1+ [+ I +—-xo]6

a (\fi + 14 zj@{) . =

Using Simpson’s rule, we have

jﬁ'{dx = ( x—) l(0+0)+2d_/z+JJ‘/z)+4(jﬁ+1+JF)1

eV = 233

Example 9: A river is 80 m wide, The depth d in meters at a distance x m from
one bank is given by the following table:

x.{ 0 |10]| 20| 30} 40} S0} 60 70| 80O

04171 9]1] 15| 14| 8| 3

Let us find, approximately, the area of cross-section. App]yins Simpson's rule with
n=38, we obtain the arca uf cross-section

Awm -!jq- (0+N+27+12+14)+4(4+9+ 15+8)]

- — [3+66+!44| = 710 sq.m.

As we have seen in this example, Simpson®s rule is very useful in approximating
the area of ‘irreguiar figures like the cross-sections of lakes and rivers. -

See if you can do these exercises now.

E E.13) a) Use Simpson's rule to evaluate the following, taking the given value of n.

g'i“dx.n=4
X

a
b) From the formula
1 1

% = 5 Tiii" calculate =, using Simpsdn's rule with h=0.1.
X

et ———




E E 14} A curve is drawn through the points (1,%2), (1.5, 0
(3. 3), (3.5, 2.6) and (4, 2.1). Estimate the area begy
and the ordinate x =, x =4,

B, © Ared Under w Curse

X-

axis

E E 15) A river has width 30.meters. H the depth y meters at distance x meters from
one bank be given by the 1able,

0

5

10

15

20

25

30

y

0

1.2

2.1

2.4

1.6

0.6

Find the approximete arca of cross-section.

E & 16) The veiocity of a irain, which siarts from rest, is given by the following

table, the time belng reckoned

in minutes {rom the start and the speed in
"

kms/hr.

Min | 2 sl 68 Jw] e]wulw]|n o
Kma/he| 10 18 (25 [ | 2% 200 1 s_J_z 0
Estimate approxirr.nalely the to1al distance run in 20 minutes.

41"
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Now Ict us quickly recall what we have done in this unit.

15.4 SUMMARY

In this unit we have covered the following points:

1) The knowledge of integration is helpful in finding aress enclosed by plane
curves when their equations are known in
b

a) Carnesian form: A -—-5 y dx

b) Polar form: A =%j r? da.
1

2) The arca bounded by a closed curve given by parametric equations is
a 8

dx 1 dy dx
A S,dldzg(xdl "'::lt)'It

3) When the integral cannot be exactly evatuated, we can use the method of
numerical integration. The two methods given hece are:
a) Trapezoidal rule: . C

1
ff(:) dx = (-;- Yo+ Vi + Y1 +oF Yoy it -z— y,) Ax,

[ ] -
where n is the number of sub-divisions of {a, b], and A the length of each,
sub-interval.
b) Simpson's rule:
" .
[ f(x) dx ='% [[yo+§'1,)+2(y;+y¢+...+yh 2+ Y+ -+ Yl
v - : - ’

when [a, b} is divided into 2m sub-intervals of length h.

155 SOLUTIONS AND ANSWERS
EN) S sin x da

1]

id
-cos x},,

Y

~cosT +cos0=1+1=2




2 Area Under g Curve
E2) Sc' = ']I el -c. :
]
3
s -
EY) 5(5!-3:‘) dx = |_5_ B M
0
Ed) y = 2fax -
2
12 7, 31 2
AEij dex=4\fﬁi— 345!;.."_._:-&__
3 ¥z |, 3/2 3

ES5) Points of intersection of y2=4ax and y=mx are (0,0) and (4a/m?, 4a/m).

4nsml da/ml
Y — L
A= 52 um-smxdx—zf——] --—~—]

1] [1]

3/2 2 {0

4&a fda\¥2 m f4a\? Saz
- T(Tn'?) "'z_(]i"—) Y
E6) For a loop, we should find two distinct, consecutive values of 8, for which we
get the same valuc of r,
If ry = asin 36, and r; = a sin 36,,
M = fz‘!‘il’llﬁ-.ﬁl‘l”: = 0.

or 2c0s X0 t0D . 30 -8) _
2 2
Mo+l x 66 _
2 2 2

SO+ 8= ";- ord, = 8.
Thus, 6, = 0 and & = x/3 will give the same value of r.
/3
A= L S r? dg
pA
)
3
sin? 30 d@

fl
NI“”
D ey 7

A . o

6-_[ sin‘udu ifu = 3.
n

2

_ ar
12
.}
=" - I r » L]
=rj o= — 1 37 COo5t dw
z |
1]
az

WALl w2 .
a‘f 1. l'
=~ _"-‘“S‘G-b v ) cos? (x - ¢) do

43
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- ( cos” o do 4 ( vos? & dw)

1a

aj®

[F)
[

j cost ddd = rn*/S.

|
ut”

E8) Points of intersection are piven by
Reos 2! - darcos 28 = 172, i.e., cos’6 = 34
L go X St I iln
6" 6 6' 6 .
Because of symmetry w.r.t. the initial line, the required area A =2 (the area
under the lemniscate above the initial line from =0 10 0= /6 and from O e Sn/6 Q,
8 =7 minus the area undér the wide from 8=0 10 8 =/6 and from 6 w 5%/ 0 G = x)

L7 x .
=21 2 J ? 1
2[2 Sﬁms 208 d6 +?'£mﬂw29d0-—2-fm4dﬂ
a
=3'\‘3+28ﬂ3

E9) x = a(3'sind - sin’f), y = a cos¥

d
d; = 3a(cosf - sin’f cosf) = 3a cos’d
ir Ir 2
.Sy%dﬂ=33’5cos"8d0=lh’§m‘ﬂdﬂ
) S ° -
-—-I!n’-s-.—!-.-l-.-'-(reduuionformuh)
(.3 4 -2 2 .
_ 15a%r
dx 8 d
EIO)-E’;-=-asin8+bm§0.£-=-a'sin0+b'cos0
x%-ygg-::(ab' ba')+(ac'-ca')s_in8+(cb.'-bc')mse
Ir
1. dy dx
o= — ~y—]d# = (ab’ -ba’
2 (xda ydﬂ) (al a'yr

Eil) A loop of this curve lies between t =0 and (==
] 4 . . L 3

azssinztoostdt=_ZazIsinlcos‘ldt

7] 1] - n
(24

.
4a‘-“ sin t cos’t de

a

Commm—y
-
o
elg
L}

]

o 3

Q- ———

, coslt |2 4a?
3

1y oy 7777 ST = o
R N Y

|
. t
H PR




|
(-I— KO+ 1/4+ 1 +9/44 —I—x4) -
2 2 2

>
h

2.75.

M s oz [ 25 s Jas |4

—————

NG | 25 | 22 \-I_O._;-‘_i-!—\"l'é J16.25 | 273

(l xV3+2.5+2v2+ [i0.25 + f13 + (1625 +\5) =
2 N b 2

A =
= 9.76.
El3) &) T 0 /4 =72 3x/4 .
i':_" 1 iz | x| anix 0
5 SIRX g = i% 1+0‘+z(2/r)+4(4/ﬁr+4/ﬁ:)]
—
] _
x 4'+16ﬁ]
L Pk
12 x
_x 1342
TS
= 1.0665.
O To [t 12 13 14a1s51l6 |7 [ 19 |1

Ay 9|96 52| 86| .8 |73 [.67].61].55
1+x2

! 113
. dx = = | 242096+ .86+ .73+ .61
S b 3 [z A )

+ 4(.§9+ O24+ .8+ .67+ .55)]

= 0.7846
Now x/4 = 0.7846 =» x = 3.1384.

14) 1502 |25 3 |as]| a4

2 24| 2.27 | 2.8 3 2.6 2.1

A= 051+2.4+28+2.27+3+2.6+1.05)
= 0.%15.12) = 7.56 (trapezoidal rule).

EIS) A

%- [0+ 2(2.1+ 1.6)+ 4(1.2+ 2.4 +0.6)]

% (74+16.8) = % 24.2) = 13£ (Simnsan's rule},

25+18+254+29+32+20+ 11 +5+2)
(147 = 294, °

Ei6} 5
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16.1 INTRODUCT ION

In the la= unit we have seen how definite integrals can be used to calculate areas.
In fact, bis application of definitc integrals is not surprising. Because, as we have
seen earlier, Lthe problem of linding arcas was the motivation behind the definition
of' integrals. Tn this unit we shall sce that the Iength of an are of a curve, the
volum= of a cone and other solids of ravolution, the area of a sphere and other
surfaces of revolution, can all be expressed as definite integrals. This unit also
brings us to the end of this course on calculus.

Objectives

After reading this unit, you should be able to:

® find the length of an arc of a given curve whose equation is expressed in either
the Canesian or parametric or polar forms,

@ find the volumes of some solids of revolition,

® find the arcas of some surfaces of revolution.

16.2 LENGTH OF A PLANE CURVE

In this section we shall see how definite integrals can be used to find the lengths of
plane curves whose equations are given in the Cartesian, polar or parametric form.
A curve whose length can be found is called a rectifiable curve and the process of
finding the length of a curve is called rectification. You will see here that to find
the length of an arc of a curve, we shall have to integrate an cxpression which
involves not ouly the given function, but also its derivative. Therefore, Lo ensure
the existence of 12 iniegral which determines the arc length, we make an
assumiption that the Tunction delining the curve is derivable, and its derivative is
also continouws on the interval of integration. .

Eet's first cansider a cuive whose equation is given in the Cartesian form.
4

14 % 1 FMartavion Dar
B e A nolATATORGIE W OArLERR

Le y=f(x) be dehined on the inferval [a, bl. We assume that [ is derivableand its
derivative £ is comtinucus. Ler us consider a parlition P, of {ag, b], givea by

P. = ja=xp < % < %3 < ... < x,=bht
The ordinates x:-a and X - b deicrmine the extent of the arc AB ol the curve |
y=Mx) [Fig. (). et ALt 20 0 .., n-1, be the points 1a which 1h¢ lines x = ¥,

mecet the curve.

Joi the swee wve poinrs Ay NN ML L M B By stendahe e s e,
Hore we e appervonmadad e oiven cive Dy 3osenens oo e s
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\Ml M, M, -
yd /ra,,,
\—/) Mz Ax, Qy

{ul

{x) . Fig. 1

If we can lind the length of each line segment, the total length of this series wiil
give us an approximation to the length of the curve. But how do we find the .
length of any of these line segments? Take My M,, for example. Fig. 1(b) shows
an enlargement of the encircled portion in Fig. 1(a). Looking at it we find that

MMy = f( & x)% 4 (& i
where A xy=M,Q is the length (xa - xp, and .

4 Y;=M;Q=Hxy) - f{x)=y - 2.
.In this way we can find the lengths of the chords AM,,
MM;, ... » My B, and take their sum

Sn=Y Mo s (ay)
{m}

S, gives an approximation to the length of the arc AB. When the number of
division points is increased indefinitely, and the length of each segment tends to
zero, we obtain the length of the arc AB a3

- .
Ly = lim 3 (ax)i+(an), )
ICE
provided this limit exists.
Qur assumptions that f is derivable on [a, b], and that {’ is contipuous, pcn'mt s
to apply the mean value theorem [Theorem 3, Unit 7).

-Thus, there exists a point Py (x;, y;) between the points M;_, and M; on the curve,
where the tangent to the curve is paralie] to the chord M;.\M;. That is,

_ay
-3 ¢]

f{x)

or ay,=1'(x{) ax

Hence we can write (1) as

Ly = pm_ ): JaxP+ [0(x)) ax)?

=1
= im Y e ax
{=1

.This is nothing but the definite integral
ib

S Jo+ [f*¢x)?] dx.
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4R

| hcrcln.rc ) )
R ——
I f Fdy 32
L) = J|+ 2V a )
A 5 ( - ) X @
Remark 1; 1 is somelimes convenient to express x as a single valued function of y.
In this case we interchange the roles of x and y, and get the length
d
B " dx \?
L, = 1+ —=] dy, w3
A j‘ ( ay ) y (3)
. c
where the limits of integration arc with respect te y. Note thal the lengih of an arc
of a curve is invariant since it does not depend on the choice-of coordinates, that.
is, on the frame of reference. Qur assumpuon that f* is conlmuous on |[a, b]
ensures that the integrals in (2) and {3) exist, and their valuc L is the length
of the curve y=f(x) hriween the ordinates x=a and x=b.
The following example illustrates the use of the formulas given by (2} and N,

Example 1: Suppose we want to find the length of the arc of the curve y =Inx
intercepted by the ordinates x=1 and x=2,

We have drawn the curve y=inx in Fig. ?

N Inx

—

Fig. 2

Using (2), the required length L1 is given by
F

) 2
LE = S |+(_d_¥..) dx
Y.
|
2 | |
= r.‘ |+—;} dx. since Ei -l
J ¥ 57 ux x
. S KNS 4
X
1
. . da
Ifwepor 12" = 1) we wet = - -'-. and therefore.
di X
5

e [ e

-t pETTITRRL




| 1 [~1 ] N
=+ —-In - -
l 2 l+l 3] Y M
A DR vi-1
e VS -V2 &+ —Ip ——— - — e
R Y B R
_ _ 2 ' t
=5 VI + 1 ~In
" VZ+1
VS ovT 4 1 224D
. VS+1

We can also use (3) to solve this example. For this we wrile the equation y - lnx as
x=e’. The limits x=a 1 and x =2, then correspond to the limits y =0 and y =in2,
respectively. Hence, using (3), we obtain

in2
in} —
Ln = S ,I +eb' dy
]
P
l.l2 .
- S T du, on putting | +&¥ =y?
Vi
]

- S(l+ L 'I)du.=\fs'-\r2'+ln

g(v’i+ ]
vS+1 '

2
as we have seen earlicr. This verifics our observation in Remark 1 that hoth (2)
and (J) give us the same value of urc length.
Now here are some exercises for you Lo solve,

E E 1) Find the length of the line x =y between the points (3, 1} 2nd (6, 2}. Verify
your answer by using the distance formula.

benber Applicatluns of
Inicgra! Calrulnx
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£ E 2) Find the iengih af the curve v=1In sec x between the pnnts X =0 and x = x/3,

. —

E E 3) Find the length of the arc of the catenary y=C cosh (x/c) measured (rom the
vertex (0. ¢} to any point (x, y) an the catenary.

E E 4) Find the length of the semi-cubical parabola ay?=x? from the vertex to the
point (a, a). .




E E 5 Show that the length of the arc of the parzeoia ;7 =4ax cut off by the line

Jy=8x is
a(ln2+ 15/16).

In the next sub-section we shall consider curves whose equetions are expressed in
the parametri¢ form,

16.2.2 Parametric Form

Someimes the equation of a2 curve cannot be written cither in the form y=1{(x) or
In the form x=g(y). A common example is a circle x2+y*=232, i1 su " cases we
try to write the equation of the curve in the parametric form. For exar:..le, the
abave circle can be represented by the pair of equations x=a cos(, y=a smt. Here
weshal!denveafomu!atof'ndthelmgthofacmcgweub) v pair e
parametric equations.

Let x=g(t), y=¥{t), @ = t = § be the equation of a curve in param %ric Torm,
As in the previous sub-saction, we assume that the functions ¢ and ¥ ice hnth
derivable and have continuous derivatives ¢ and ¥ on the interval [=, f]. We
have

d dy
e = ¢"(t). and a‘—'&(l)-
ence.iy—n L]

o'’

f, s , v (:)
¢ (t)
Joror + wap
¢

(we assumc that ¢'(t)=0).

Now, us:ng (3}, we obuain the length

£ )
\ ,J|+(";) dx
1= .1(-}
o | e Er T S

R
Thus, L = S'Jlb'(lll‘ ¥ WO dt ()

Furthr Applkcailoss of
Intcgral Caleulu
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The following example shows that sometimes il is more convenient to express the
cquation of @ given cuctve imlhe parametric form in order to find it length.

Example 2: Let us find the whole length of the curve

RO

By subsiitution, you cap easjly-check that x=a cos™t, y=b sin’t is the parametfic
form of the given cqu.-,-m,gnme lics between thé fines x= 4+ aand y= 4+ b
stnce -] =< cost = |, and =1 ‘= sin t = 1. The curve is symmelirical about. both

- the axes since its equation remains unchanged if we change the signs of x and ¥.

The value (=0 corresponds 1o the point (a, 0) and (=272 corresponds to the point
(0. b). By applying the curve tracing methods discussed in Unit 9 we can draw this
curve {sec Fig. 3).

B3 {0, b}

A@o)x
>

t=0.2x

Fig. 3

Since the curve is symmetrical about both axes, the totil length of the curve is
four times its length in the first quadrant,

-Now,gx—=.-33cosﬁsint;£—"—=3bsin1toost ]
dt dt

(-d—i)z + (-':I—:"-)2 = 5 »in% cost (a? cos®t #+ b? sin%)
\ dt dt ' .

Hence, the length of the curve is
2

Le=d g 3 sint cost Ja? cos®t + bisint dt

1]

v/l

= 12 SSint ‘-“‘-'SlJa2 costt + bisint dt

’ Pulting u?=a? cost™t + bsind1, we obtain

2u = (2b? - 22%) sint cosl -d—l,
du

and the limits t =0, t=w/2 correspond 1o u=a, U =bh, respectively.

Ty




12 uidu I2 o b
- b’-a? bi.a?| 3 |,
_ 12 ¥-a L Ha’+bisab)
“bi-a? 3 a+b
Now you can apply equation {4) to solve these exercises.

E E 6) Find the length of the cycloid
Xx=a(f-- sin §) ; ywa{l -coz )

E E7) Show that the iength of the arc of the curve
‘x=e'yint, y=e'cos t from t==0 to t=%/2 is V2{e*? - |).

16.2.3 Polar Form

in this sub-section we shall consider the case of a curve whose equaticn is given in

the ?olar form.

Let r=1(§) determins & curve as @ varies from f=e lo 0-19-, i.c.. the function [ is
defined in the interval [a, 8] (sce Fig. 4). As before, we assume that the function {
is derivable and its derivative f* Is continuous on [r, 8). This assumption ensures

that the curve represented by r={(P) is rectifiable,

Furiher Applications of
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Bl e

[\ .
(1 X
biz. 4
Transfonring the given equalions into Cartesian coordinales by lalung X=rcos 8,
y=r sin 8, we obtain x={8) cos &, y=F®) sin 8.

Now we proceed as in the casc of parametric equations, and get

OO

1 , df ) _ df

1+ (.E!.’_) = ot = e ————
dx dx/dg

Hence, the length of the arc of the curve r=1(8) from 6=a to #=4 is given by
. x=ff@yen 8

o (e o | ST )

am[{g) Cin

changing the variable x to &,

Il
ﬂL—-—-;.“

JI70) cos 8 - F (8) sin 82 + [F'(6) sin & + 1(8) cos 6]% d@

—

Jife)?: + (£ dé-

g
I e '
[ dr
- r=+(—) de {3
R
We shall apply this formula to find the length of the curve iz the following
example. .

Example 3: {o ind the perimeter of the cardioid r=a(l +cos §) we note that the
curve is symmetrical about the initial line (Fig. 5). Therefore its périmeter is double
the length of the arc of the curve lying above the x-axis.

]




hd ¥
2a SJ'E(]:cos 9) d§ = 4a Ems -g- df

f o

i

|

= fa.
i}
In this section we have derived and applied the formulas for finiing the length of
a curve when its equation is given in cither of the threc forms: Cartesion,
paramet-ic or polar. Lel us summarise our discussion in the following table.

Zsin—?-

4a

Table 1: Leagth of ap arc of a curve

Equation of the Curve Length L

b

y = f(x) SJ} + ' (x)? di
Jl+g't)? dy

x = g(y)

> “"'—-"ﬂ.-

)y = Y1) Nwrvola

o,

Jr(o)=+ (9% do

= I(8)

nt_—-—.“ -]

Uning this table you will be able 10 solve lhm_exercises now,
E E 8 Find the length of the curve r=a cos? (8/3).

[E B9 Find the length of the circle of radius 2 which is given by the equations
X=2cos51+3, y=2s5int+4,0 st < 2r.

Further Applications of
lategral Calenlng

l+cos 3
- ooy
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E E 10) Show that the arc of the upper hall of the curve r=a(l - cos 6) is bisccted

by 8=2x/1. .

E E 11) Find the lsagth of the curve r = a(6' — 1) from 8 =" 10 8 = |

16.3 VOLUME OF A SOLID OF REVOLUI'IO

. Until now, in this course, we were concerned with only plane curves and regiéns. In

this section we shall see how our knowledge of integration can be used to find the
volumes of certain solids. Look at the plane region in Fig. 6(a). 1t is bounded by
x=a, x=b, y=£(x) and the x-axis, [f we rotate this plane region about the x-axis,
we get a solid. See Fig. 6(0b).




Farlher Applicallota-ol'
Integral Calculug

Y y =f(x} Y|

in
Fig-6

Such solids are called solids of revolution. Fig. 7(a) antF Fig. 7(b) show two more
examptes of solids of revalution. '

in [G )
Fig. 7

The solid in Fig. 7(a) is.abtained by revolving the region ABCO:- around the y-axis,
The solid of revolution in Fig. 7(b} differs from the others in that its axis of
rotation does not form a part of the boundary of the plane region PQRS which is
rhtated.

We see many examples of solids of revolution in every day life. The varioys kinds
! pots made by a potter using his wheel are solids of revolution: See Fig. 8(a).
“vme objects manufactured with the help of lathe machines are also solids of

-t oiation, See Fig. B(b). '

_— - 4|

Workpicce
Cutting tool

tal Fig. 8 w ) 5'?l
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Now, let us try to find the volume of a solid of revolution. The method which we
are going to use is called the method of slicing. The reason for this will be clear in
a few moments.

Let T,,_ = [a = Xp € X < X < . € Xy x,.=b] be a partition of the intcrval
[2. b] into n sub-intervals.

'}

i

¥PM?, MN is the volume af the
drsc with radius PM and
tkckpess MIN.

wQN3MN it the volume oF the
disc with radius QN nd Ihlck-

" mepsMN.

I F Is continuvous on [a, b],
f{a)=c and f(b)=d. and z lis
beiween ¢ and d, then 3x, €
Pa.b[st fix)ez.

58

""M-_—-—""

'

.

(b} . 9 T {c)

Let ax; denoic in® ww2th of the ith sub-interval [x;.,, x;]. Further, let P and Q be
the points on the cur'\rc. ¥ = nmrearresponding to the ordinates x=x;_; and x =X,
respectively, Then, as the curve revolves &baat the x-axis, the shaded strip PQNM
(Fig. %{a)) generates a disc of thickness Ax;. In gencrsl, the ardinates PM and QN
may not be of equal length. Hence, the disc is actually the frustum of n cone with
its volume av,, lying between x PM?MN and 1 QN3MN, that Is, between

* [{(x.)}2ax; and « [f(x))?ax;  (Fig. (b} and (c))
If we assume that f is & continuous function on [, b). we can apply the
intermediate value theorem (Theorem 7, Unit 2, also sec margin remark), and
express this volume as

av; = r[f(t,}] Ax), where t;is a sultable point io the interval [x._,. x]. Now
summing up over all the discs, we oblain . .

v, = E Av; = E x {R(t? Mq. Xy = 1 S X, as an approximation

to the volume of the solid of revolution, As we have observed earlier while

- defining a definite integral, the approximation-gets better as the partition P, gets

finer and finer and Ax, tends to zera. Thus, we get the volume of the solid of
revolution as '
n

V=ilimY, = im ¥ = (f0F 2

B rl_Imlml
b b
=r jllf(x}]2 dx = r Yy’ dx .6}
[
3 ]
Wi _L_m —a £ al ] = =8 als 2abd Jdacadlad ' sha
YT E Jnan uac llll’b IU[IIIhIﬂ VIR N FiTE AL 1 = L&l I el I BB R ETW

following example.

Example 4: Let us find the volume of the solid of revolution formed when the arc
of the parabola y? = 4ax between the ordinates x =0, and x =2 is revoived about
its axis. The solid of revolution is the parabolic cap {n Fig. 0.

The volume V of the cap is given by
[ ] a x] .
V=5ﬂ’dx=r§4udx=4:a[—z-] = 2ra’- - .
' 0
0 0




Fig. 19

Our next example illustrates g slight modification of Forriula (6) to find the
volume of a solid obtained by revolving a p!anc region about the y-axis,
: 2 2 .
Example 5: Suppose the ellipse —x-i-+-:7= i, (a > b) is revoived about the minor
a

axis, AB (see F'g (1}. Let us find the volume of the solid scnerated

In this case the axis of rotation is the y-axis. The arca revolved about the y-anis fs
shown by the shaded region in Fig. 18. You will agree that we need to consider
only the area to the right of the y-exis.

Fie. I1

To find the volun_:c'or this solid we interchange x and y in (6) and get
b b

F 2
= 2 = 2 _1— 2— y
v jrx dy jra (l " )dy since x°=ga (l b’)'

-+ -h

b
' 2 y? y_l
= 2ra S (l - _BT) dy since I - o is an even function of y.
d .

LR
- 2za? y_—y_l
7 |,

4
mw — ralh,
3

tanber Applications ol
Integral Culcultus
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Applicitions of Cricuies .

- generated by rdlating the area bounded by x=a, x=b, the x-axis and r=l’(ﬂ- aboyt

We can also modify Formuiu (6) to spply to curves whose equations are gwen in
the parametric or polar forms. Let us tackle these ane oy one.

Pgr:met’ric Form

If a curve is given by x=6{t), y=y¥{i). @ < ( = 8. then the volume of the solid of
révolution about the x-axis can‘be found by substituting x and y in Fominla (6) by
&{t) and J{th respectivelys; Thos,

a

dx
V = Nt
.V rS [t)) o dt

[ . .
oV =% Sl@(t)l'd.'(t) de. .

We'll now derive the formula for curves given by polar equations.

Pdlnr Farm

Suppose a curve is given by r=f(6), 8, 5 8 = &, The volume of the solid

"

the x-axis is
]
. mz d
Vwarxl({rsind —E-E—(rcosﬂ)dﬂ

) 4 ‘ .
Thus, ¥V = x 5 [£¢8) sin 6)2 [*(9) cos 8 ~ 1) sin 6] A8

Let's ysc this formuia to find the volume of the solid gencrated by a cardiold

about its initial line.

Example 6: The cardioid shown in Fig. 12 is given-by r=a(l +cos 6.

4

Y

P (v. 9}

Fy- 12

The poinis A and Q ¢orrespond to a0 and 8=m, respoctively. Fere, again, we
need to consider only the part of the cardioid above the initial tine. Thus,
o .

-~

v

St{rlinaﬂ'—:-e'—(rcosﬂ)dﬂ

it

xa? s (1 +cos 6)? sin? 8 (1 +2 cos &) d8, since r=a(l +cos ) ,
h




dv

]
b
o0
b |
=

F—y .
°
=
-
LN
[a)
=1
w
L
(PR
o
L=
I
[
It
»
)
N L
;Q_——‘ﬂ-

«°

3
e
=

-

c
-

]

256wa’ 5 sin‘d cos’¢ d¢ - 64wa’ 5 sin®é cos'e d¢. where ¢ =0/2
n i
G4xa’ Sﬁj

T on applying a reduction formula from Unit 12,

In all the examples that we have seen till row, the axis of rotation formed a
boundary of the region which was rotated. Now we take an example in which the
axis touches the region at only one point.

Expmple 7: Ler us find the volume of the solid generated by revolving the reglon
bounded by the. parabolas y=x? and y*=38x about the x-axis. We have shown the
area rotated and the solid in Fig. 13 (a) and (b), respectively.

X

w Fig. 13 (L]

Here. the required volume wﬂl be the difference between the volume of the solid
generatcd by the parabola y* =8x and that of the solid génerated by the parabola

= K

2
x*7r 48r
Thus, V = = h 8x dx - (x‘ dx] |'4x= - T]
L: J ] L <]
Note the limiis of integration,

Here, we list some exercises which you can solve by applying the formulas derived
in this section.

E E 12) Find the volume of the right circular cone of height h and radius of the

circular base r.

(Hint: This cone will be generated by rotating the triangle bounded by
the x-axis and the line y ={r/h) x).

Fariher Applicstinmn of
Integral Culeulin
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—_——

E E 13) Show that the volume of the solid gﬁn:raled by revolving the curve

—

x¥ 4 y¥3 = 33 ghout the x-axis is 32xa’/105.,

E E 14) The arc of the cycloid x=a (1-sint), y=a {l-cost) in (0, 2x] is rotated abou

the y-axis. Find the volume generated.
(Caution: The rotation is about the y-axis.)




E E 15) Find the volume of the selid obtained by revolwng the limacon : Furtier Applications of
r=a+h cos # about the initial line. lutegral Calentug

E E 16) The semicircular region bounded by y-2= 8 - x* and the line y=2 is
" rotated about the x-axis. Find the volume of the solid generated.

- —

16.4 AREA OF SURFACE OF REVOLUTION

Instead of rotating a plane region, if we rotate a curve about an x-axis, we shall
gel a surface-of revolution. In this section we shall lod a formula for the area of
such a surface. Lol us start with the case when, the equation of the curve is given
in the Caricsian form.

Carteslan Form

Suppoze that the curve y=1f{x) [Fig. 14] is rotated abour the x-axis. To find the
area of the generated surface, we consider a partition P, of the interval [a, b},
namely, .

Py= [a-xg < X € Ay € e K Xpg € x.-b]

SLEL. DRI
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Fig. 14
Let the linds x=x; intersect the curve in poinis M, i=1, 2, ..... n. Il we révolve

the chord M |M; about the x-axis, we shall get the surface of the frustum of a
cone of thickness Ax, = x, - x;,. Let As; be the area of the surfice of this frusum, ;
Then the total surface area of all the frusta i
n

S, =) &

ja1
This S, is an approximation to the area of the surface of revolution. The area of
the surface of revolution generated-by the curve y=f(x), is the limit of S, (if It
exisis), as n — ce and each Ax;,. - 0.
To find the arez A of the curved surface of a typical frustum, we use the formula
A=xin+r)1, )
where | is the slant height of the [rustum and r, and r; are the radii of its bases
(Fig. 15). .
In the frestum -under consideration the radii of the bases are the ozl'dl.tlllﬂ )
and. {(x)). while the slant height M \M; is given by J( ax)*+( ay) . .
where 2 y,=f(x) - {xy). We assume'that [ is derivable on [a, b and " is
continuous. Then by the mean value theorem (Theorem 3, Unit 7), we obtam

Ay =1"{t) & x;, for some t; € {x_), x]-
Therefore,

b = w {f(xoy) + ()} Hax) + (an)
- ;rﬂf.—"—‘,}lﬂf'(qnl ax.
and S, = z'ij ""—"_—"—"—,ln{r'(q) 2 ax.

F
Twm)

Proceeding to the imit as n — oo, and each ax — O, -we have
b

S =2r Sr(x) Jl+{r'(x)1’ dx . | .

3
b -

= Ix Sy l+(dy/dx]2lqlx )

We shell now illusirate the use of this formula.




Example 8: Let us find the area of the surface of revolution obtained by revolving Farther Applicalioas of
the parabola y! =4ax from x =2 to x=3a, abour the x-axis. tnicgral Calculn

=

I

Fig. 16

The area of the surface -of revolution
N

2
s=z:Sy |+(5’l) dx .
dx

where y? = dax, % - ;_Za Hence

2 ™
=4rva | x+adx = 4xVa, 3 [(x+a)mJ

ey

3

Instead of revolving the given curve about the x-axis, if we revolve.it about the
y-axls, we get another surface of revolution. The area of the surface of revolution
generated by the curve x=g(y). c = y < d, as it revolves about the y-axis is given
by.

= gra’ [43:2 -'23"]

S = 2x ‘l;x I+ (dx78y)? dy
<

Now lct us look at curves represented by parametric equations.

Parsmetric Form

Suppose a curve is given by the parametric equations xe@{t), y=y¢ {t). L € [a, f].
Then we know that ’
dy ¥'(1)

dx &) ' 65
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Substizutios s nr Rl (i), we per the area of the surface of revolution
peneiaied oy the curve i it tevolves aham (he s-axis, 1o he

S = 2r i VO e (0] + 161 du.

Now we shall state the formula for (he surface generated by a eurve represented by
a polar equation.

* Polar Form

If r=h{f) is the polar equation ot the curve, then the arca of the surface of
révolution generated by the arc of the curve for 8, = 0 < 6., as it revolves about
the initial line, is ' ’

)

S=2r 5 rsin Jr_3+(dr/d9)z de

L
Study the following examples carefully before trying the excrcises given at the end
of this section,

Exsmple 9: Suppose the astroid x=a sin’t, y=a cos™(, is revolved about the x-axis.
Let us find the area of the surface of revolution. You will agree that we need 10

consider only the partion of the curve above the x-axis.

For this portion y > 0, and thus t varies from -x/2 10 /2.

dx
— = 3asin21cbsl.—g—!- = - 3acosttsint
di dt

i 1
Therefore, (_‘!1) + (iy_) = 9a? sin’t cosh
dt de

We therefore get,

/2 .
7 3
$ = 2r | acos’t9a2 sin% cos™t dt
-¥/1
v/l

=2r )] acos’t|dasintcost | dt

-x/2
w/d

= 6xa? | cost{sint|de

T enfl
w® s "
W cos’t P
= {2xa? | coshtsintdy = - l_2:ra‘[c ]
. - I
o
12
e & 3
5 Ta

- Example 10: Supposc we want 1o find the area of the surface generated by

revolving the cardinid v=a(l +cos 8)-about its initial line.

Notice that the cardicid is symmetrical about the initial iine, and extends above
this line from § =0 to § = x. The'surface generated by revolving the whole curve
about the initial line is the same as that generated by the-upper half of the curve.
Hence .

T

S=2r jrsin 8 ,;1+(d:/de}’ dé

.




L - ‘ . °-t
= 2x Sa {l+cos0):inb Jl‘2+(dr/d.ﬂ)' d6 Inlegral Cﬂ;.l..
.. dr . )
Since r = a{! +cos A}, aad 5 = - a sin @, we jave

1 d 2 N 6
L ( Y 2 a¥l4cos 8 +alsin? @ = 4al cos? —
de 2

Therelore,

w
1]

2x Sa(1+cosﬂ)sin823c05%d8
fl

- &
=4wa’54sin—cos‘-g-dﬂ
2 2
1]

/2
I2nal 5 sing coa'd d¢, where ¢ =872
1]
—cos’$ ]"’1_ 32xa’
.5

[

=3213“'[
1o 5

E E 17) Find the arez of the surface generated by revolving the circle r=a about the
x-axis. and thus verify (hat the surface area of a sphere of radius a is 4xa?,

E E 18) The arc of the curve y=sinx, from x=0 to x=r is revolved abont the
x-axis. Find the area of the surface of the solid of revolution gencrated.

67
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" RN S S Yo
E E 4 The ellipse x° a% - 000 1 revolves abour the A axis. Find tive area ol the

wurfisce of the «lid of revolgion this ohiined
" .

E £ 20) I'rove 1hat the surlace of the salid generated by the revolution about the
x-anis of the loop of the corve x =12, ' '
. l-"
n - -- s 3
y 3 is 3z

E E 21} Find the surface arca of the solid generated by revolving the cycloid

% =alf - sin 6). y=afl - cos ). abonl the line v=0.




Now let us quickly recall what we have covered in this unit.

Fou.-cr Applications of

16.5 SUMMARY

I this unit we have seen how to find AN
{} the lengths of curves
2) volumecs of solids of revolution and

3) the arcas of surfac=s of revolution.

In each case we have derived formulas when the equation of the curve is given in
either the Carlesian or parametric or polar form. We give the results here in the

form of the {ollowing tables,

Lengtih of an arc of a curve

- —

Equation Length
b
y = f{x) Lfl-c-lr'{;ﬁi dx
4
X = gly) SJHIB'(:V)]’ dy
s
x = () SJ[W(!)I’ + [ ) dt
y = ¥} .
]
¢ = f(6) SJ'IT(E)F + (@) de
Yolume of the solid of revoluilon
' Eq'uation Volume
—— -
y = fx) . S v dx
aboul x-axis
X = gly) s
| about y-axis x S x- dy

"

z } (SO ¢°(2) dt

vk = Biihy = Cio
about x-axis

|

Lor o= W ' A j [h(@? sin 81° [h"(9) cos & -

I about the initial Tine

h(8) sin 0] db

6o
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Aren of the surface of revolutlon

- _
Equation _Area
f( ' -} . '
y = {(x
about x-axis 2r S 1) J1 +{0 (x))? dx
x = g(y) e —
about y-axis 2r Sz(.?) J1+{g" 0 dy
< - s
X = g{thy = gt) P YAy o
sboutzatls - o |- 2r S W) Jio O + (¥ ()2 di
- - a"
r = h{f) sbout the iaitial tme 2z 5 rsin @ fr?+(dr/d6)? 4o

16.6 SOLUTIONS AND ANSWERS

]
EhL = SJI' + {dx/dy)? dy

13

)
I ‘\ldy - [o.

1
By distance formula,

L= Joa - ) + 3 - 33
=J3-6° + (-2
=J=nF oy
= Jio.

b

SJI + (dy/dx)? dx (%"-'— a

X, secx

E2) 1.

.
¥/l

[ p—

3J| + tan’x dx

.0

uf3

5secxdx=lnise'cx+tanxi-l
= a

d ]

.secxmnx=rumx)

L5 I

i | secw/3 + tan x/3 |

| “secO + tan0

=@+ J3)




EW L= V1 5 inn ?[x/c) dx

':I':.,._—-F]’ '.'l.——l-;.

c<h gife) dx

X
= ¢ sinh -x/c)l = ¢ ashiag
Jo

£3) y =\F— L dy/dz : (372 '\!

5!+———dx

e 5 TS

F
L]

a ”n
Z‘N' (42 + 9x) ]

Q

= LY APH ) 2 _
z'N“ [(132) (48)*% = ?(Il“ 8)

8
ES)ly=8x o y = -:-:-‘- Subgtituting this in ¥y = 4ax we get
64x?

9
i.c. 64x? - 36ax = 0

--::=--1h:|r:t---2

I
Bi-
T ey
g,
+
HN
&

l y e, At —— LT TA)
E[ ?J“" +y' v 2atlny + sl +y‘l]
Jo

15a?

! + 222 In2
_— n
za-

1
(—Ji + Inz) a
16
dx

. : dy
EG —_— o= - —_— .fl
} a(l - cos 8, B8 Sin #

Funiher Anplicutions of
Iategral Calenlpy

71




a°[1 + cos’f - Xcos B + sin‘g)

Applicatlons ol Caleulus ( da ) N

2a° (I - cos 8)
4a¥ sin® (0/2)

5 st (042 4

4a Xhﬂ o de

= 8a |sind dd =
n
E7) %’:_ = e {eos 1 +7sin L), :: = e'(cost ~sint)
dx 4 dy
) () - 26
(dt) (dr ) 2
L= v2 _‘CI di = v2 ¢! I"'
o
n
= V2 (™ - 1)
! EBir=ncns’-—=-—d-r—=—aco"'--sin—?-
1 dg 3
dr \~ ;] [}
r (—) = a’cos® — + af cos® — sin? -—
) *3 o
= a* cos? A
3
Axil m

Note that L = 2=r since, here, v = 2.

E10) r = a{! -cos B, .‘-lr. = asinf
. df

N (dr )3 Co. 8
r-+{—} = 2asn—
an 2

¥
The lengih of the curve in the upper hall = S 2a sin (072} dft
0

72 = 4.1

=

bk




The length from 8 = Qto & = 2x/3

2rfd
g
= llasin—df = 2=
faasin 3
n

The arc of the curve in the upper half is bisected by 8 = 2»/3,
L ,

dr )
El)r =a{f®-1), — = 2a8
) { ]do

H dr \2 2 rat 1 2

= a? (#* + 1)
l )
LLe=a S(sl + )2 do
-1

NS

hr2
EfZ]V:rS--—, x? v
h= .
13
i 3 1h
= T XM
TR A aﬂh
E1) V = 25 S(a” - x¥H gx
1]

_ B’

HELS

N that the 1otal voiume generated is equal to twice the volume generated b
the arc of the _urve between x=0 and x=a. .'

A
co T a2 s oasing
dt

L i.: S oantt oasncoue

' ‘ - NESTTEEES Sil'l"l) dt

an’ s dr NS P LT

Further Appleations of
Integral Calenlus
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da &r cou #)
o \ P ]

= (a+bhceos’) - sin)-Fan#® g

l'vl.‘lr Ao b i

= - asin 0 - 2b sin § cos 8.

- -x ( Get b oon B a0 (asin & + 2h sin @ con t do

= -a j GE'Nin 0 307D sin'® cos # + Sab’ sin'? cos A+ 2b" s5in’ cos’O‘) d

- :.2 - 2
= 'Lza‘ Snin‘ﬂ do + 10ab? s 1in’d cos?p dal

{The onher Bwo inteprals are oqual 10 zero singe cos (x - 8) = - cos 8.

Fda! . 2 y
= ery +|(xnh-_;_ 5in # coslo dp

. ] "
(using a reductian larinula)

SR e
T3

w2r] (1@ +9-x"+ 4 0 _xH)dx-12

Y,
n

FOSpp

A
i KJ p———e . b |
= 2x 13x-—3—_+ x9-x24+ Iﬁsm"? - 27
0

= 361 + 18%% = 18x (2+%)

= Iyal I\si:’n §de

5:

= Jza? g sin 0 d8  since sin {x - # = sin §

]
x’2

-: dxad cos @

ln

-lwa:.

ot




. d
Eif} y = sinx = —-¥—=cosx
dx

\1
‘.I+(%).=l+co§’x

!
8 =2 SSIHXJI+c052xdx Y
0
/2
= r§51nle+cosxdx
' a
l -
==4-.1-S I + 17, ift = cos x
0
it — —
= 4r —J[+{2+—-ln| l+\|'[-g-[-l
2 Y 2 |
= 2W2x + 2xIn (1 + V2).
b
El9)y = — [a2_ 42
a
dy . -bx

=
dx a fa? - x?

S=4rg'j:-Jh’—x’Jl + —-—hi-:——dx

a?(a?-x}
4] oo )

dxb

B ——

al

4rb\£ E ‘ : -xz dx
a’ a’-b
4‘I'b\£ [X 2 .‘ - XQ_- b! a
- 1‘ “ X e sin" ——— 7
2 - b? 2 (a? - b} a? 0

2ra’b . fE- bl

\gz Y sin a

a* - (a? - bz) x? dx

‘.———j-

= 2xb” +

E20) The loop is between t = - V3 and t = V3, Because-of symmetry, it is
tfiough to consider the curve betweent = Oandt = V3.

-.snz,_f(:'-%’.\ e

\ /\('ﬂ 'I"(:‘i di
J /
-ﬂ 1 3
=2=r§(l+ —z—l-——i-)dt
3 3
u -
t2 ! l.‘ ¥}
=2 | =+ — - —
'[z- 6 ls].,

Funh v Applications uf
Integrm) Calcutlus




Applicstions of (elculm

b

LN} S - 22 Sa (- <or 01 aXh - cos )7+ 27 ein® 0 df

r

- % ﬂ
+ 4wa® Itl = covihain cald
- " “
2w
8
= Rwa® | sin' - do
2
I

]
s Ihre” \"'“‘ PRy

e
=10 |', SINe o
M
2
= At
1
. Maa-




